The repetitive application of pesticides at high doses against Spodoptera litura Fabricius has resulted in development of pesticide resistance and harmful effects to the natural environmental. Hence, finding alternate pest control strategies, such as entomopathogenic fungi or their application in combination with other natural chemicals, is of great importance to solve the abovementioned problems. This study presents the toxic effects of Beauveria brongniartii and matrine (individual or in combination with each other) against tobacco cutworm ( S. litura ). Different matrine treatments caused a dose dependent increase in S. litura mortality at different time intervals. The biological parameters of B. brongniartii (germination rate and average daily mycelia growth) were not inhibited by different matrine treatments. Different conidial concentrations of B. brongniartii caused significantly different mortalities of 2nd instar S. litura larvae at different time intervals. Different combined treatments of B. brongniartii and matrine showed a significant synergistic effect against S. litura under laboratory and semi-field conditions. The current findings showed a strong synergistic action for combined application of B. brongniartii and matrine against S. litura. Our results will provide baseline information on combined application of entomopathogenic fungi and natural chemicals in integrated pest management programs against S. litura .
Matrine, a naturally occurring heterocyclic compound, has been shown to enhance the pathogenicity of the entomopathogenic fungus Beauveria brongniartii against Spodoptera litura. In the current study, the biological impacts and synergism activities of these two agents on nutritional efficiency and antioxidant enzymes in S. litura were explored. Our results showed a high antifeedant activity of B. brongniartii and matrine on S. litura. The S. litura larvae were unable to pupate and emerge when treated with combinations of matrine and B. brongniartii. Following on, we measured the activities of five important antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), and glutathione-S-transferase (GST)] when treated with B. brongniartii SB010 (1 × 10 9 spores/ml), matrine (0.5 mg/ml), and B. brongniartii SB010 (1 × 10 9 spores/ml) + matrine (0.5 mg/ml). The results indicated the detoxification activity of the five enzymes in the fat body and hemolymph of S. litura when facing a combined B. brongniartii and matrine challenge. The activities of the enzymes were significantly lower than that of the control group 7 days post-treatment, indicating the inhibitory effect of the two xenobiotics. Matrine had better inhibition effects than B. brongniartii in a majority of the trials. The improved detoxification activity of the five enzymes may be the internal mechanism of synergism of matrine on B. brongniartii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.