Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.
Deep clustering learns deep feature representations that favor clustering task using neural networks. Some pioneering work proposes to simultaneously learn embedded features and perform clustering by explicitly defining a clustering oriented loss. Though promising performance has been demonstrated in various applications, we observe that a vital ingredient has been overlooked by these work that the defined clustering loss may corrupt feature space, which leads to non-representative meaningless features and this in turn hurts clustering performance. To address this issue, in this paper, we propose the Improved Deep Embedded Clustering (IDEC) algorithm to take care of data structure preservation. Specifically, we manipulate feature space to scatter data points using a clustering loss as guidance. To constrain the manipulation and maintain the local structure of data generating distribution, an under-complete autoencoder is applied. By integrating the clustering loss and autoencoder's reconstruction loss, IDEC can jointly optimize cluster labels assignment and learn features that are suitable for clustering with local structure preservation. The resultant optimization problem can be effectively solved by mini-batch stochastic gradient descent and backpropagation. Experiments on image and text datasets empirically validate the importance of local structure preservation and the effectiveness of our algorithm.
Multiple kernel clustering (MKC) algorithms optimally combine a group of pre-specified base kernels to improve clustering performance. However, existing MKC algorithms cannot efficiently address the situation where some rows and columns of base kernels are absent. This paper proposes a simple while effective algorithm to address this issue. Different from existing approaches where incomplete kernels are firstly imputed and a standard MKC algorithm is applied to the imputed kernels, our algorithm integrates imputation and clustering into a unified learning procedure. Specifically, we perform multiple kernel clustering directly with the presence of incomplete kernels, which are treated as auxiliary variables to be jointly optimized. Our algorithm does not require that there be at least one complete base kernel over all the samples. Also, it adaptively imputes incomplete kernels and combines them to best serve clustering. A three-step iterative algorithm with proved convergence is designed to solve the resultant optimization problem. Extensive experiments are conducted on four benchmark data sets to compare the proposed algorithm with existing imputation-based methods. Our algorithm consistently achieves superior performance and the improvement becomes more significant with increasing missing ratio, verifying the effectiveness and advantages of the proposed joint imputation and clustering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.