PurposeAlthough the mental health status of doctoral students deserves attention, few scholars have paid attention to factors related to their mental health problems. We aimed to investigate the prevalence of depression and anxiety in doctoral students and examine possible associated factors. We further aimed to assess whether mentoring relationships mediate the association between research self-efficacy and depression/anxiety.MethodsA cross-sectional study was conducted among 325 doctoral students in a medical university. The Patient Health Questionnaire 9 and Generalized Anxiety Disorder 7 scale were used to assess depression and anxiety. The Research Self-Efficacy Scale was used to measure perceived ability to fulfill various research-related activities. The Advisory Working Alliance Inventory-student version was used to assess mentoring relationships. Linear hierarchical regression analyses were performed to determine if any factors were significantly associated with depression and anxiety. Asymptotic and resampling methods were used to examine whether mentoring played a mediating role.ResultsApproximately 23.7% of participants showed signs of depression, and 20.0% showed signs of anxiety. Grade in school was associated with the degree of depression. The frequency of meeting with a mentor, difficulty in doctoral article publication, and difficulty in balancing work–family–doctoral program was associated with both the level of depression and anxiety. Moreover, research self-efficacy and mentoring relationships had negative relationships with levels of depression and anxiety. We also found that mentoring relationships mediated the correlation between research self-efficacy and depression/anxiety.ConclusionThe findings suggest that educational experts should pay close attention to the mental health of doctoral students. Active strategies and interventions that promote research self-efficacy and mentoring relationships might be beneficial in preventing or reducing depression and anxiety.
Circular RNAs (circRNAs) participate in the pathogenesis of various diseases by sponging microRNAs (miRs). However, the roles of circRNAs remain unreported in glomerular diseases. We previously reported that miR-150 positively correlated with renal chronicity index in patients with lupus nephritis (LN). We aimed to investigate renal circRNA profiling and the interaction between circRNAs and miR-150 in LN patients. Six renal biopsies from untreated female patients with LN class IV and five normal kidney tissues from urology patients were used for circRNA sequencing. 171 circRNAs with 2-fold differential expression were identified in LN compared with normal control. Ten selected circRNAs were validated by real-time qPCR, and seven circRNAs showed the same significant increases as the sequencing results. circHLA-C positively correlated with proteinuria (R = 0.92, p < 0.01), serum creatinine (R = 0.76, p = 0.08), renal activity index (R = 0.88, p < 0.05), and crescentic glomeruli (R = 0.93, p < 0.01). Renal circHLA-C increased 2.72-fold, and miR-150 decreased 66% in LN compared with normal control (p < 0.05). Bio-informatic analysis predicted miR-150 was regulated by circHLA-C and displayed one perfect match seed between circHLA-C and miR-150. The renal miR-150 showed a tendency of negative correlation with circHLA-C in LN patients. In conclusion, circHLA-C may play an important role in the pathogenesis of lupus nephritis by sponging miR-150.
Background Diabetic nephropathy (DN) is a lethal diabetic microvascular complication characterized by chronic low-grade inflammation. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the progression of DN. MCC950 is a selective and potent inhibitor of NLRP3; however, its efficacy in DN requires further investigation. Methods To investigate the efficacy of MCC950 in DN, eight-week-old type 2 diabetic db/db mice received injections of MCC950 intraperitoneally (10 mg/kg) twice per week for 12 weeks. Urinary albumin-to-creatinine ratio (ACR) and neutrophil gelatinase-associated lipocalin (NGAL), renal function, pathological changes, markers of podocyte and fibrosis and NLPR3/caspase-1/IL-1β expression in the renal cortices of db/db mice were evaluated. High-glucose (HG)-treated rat glomerular mesangial cells were treated with various concentrations of MCC950 for 48 hrs. Markers of fibrosis and NLPR3/caspase-1/IL-1β expression in the glomerular mesangial cells were measured. Results The NLRP3 inflammasome was activated in db/db mice and HG-induced mesangial cells by upregulating NLRP3/caspase-1/IL-1β pathway. Inhibition of the NLRP3 inflammasome with MCC950 reduced the production of active caspase-1 and active IL-1β in db/db mice and HG-induced mesangial cells. MCC950 reduced serum creatinine, urinary ACR and NGAL, attenuated mesangial expansion with increased matrix and tubular dilatation, alleviated thickened glomerular basement membrane (GBM) and foot process fusion without affecting body weight and blood glucose levels in db/db mice. MCC950 increased the expression of podocin in db/db mice, and decreased the expression of TGF-β1, fibronectin, collagen I and α-smooth muscle actin (α-SMA) in renal cortices of db/db mice and HG-induced mesangial cells. Conclusion MCC950 ameliorated renal function, thickened GBM, podocyte injury and renal fibrosis in db/db mice, and decreased the production of fibrosis markers in HG-induced mesangial cells. MCC950 effectively ameliorated diabetic kidney injury by inhibiting NLRP3/caspase-1/IL-1β pathway, which may be a potential therapeutic strategy to prevent the progression of DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.