In distributed generation systems, the inverter is the main power interface and its stability directly determines the reliable operation of the grid-connected system. As a typical topology for a three-phase four-wire inverter, the LCL-type three-phase four-wire split capacitor inverter (LCL-TFSCI) is taken as the research subject of this paper. Compared with the three-phase three-wire inverter, there is an additional zero-sequence path in the LCL-TFSCI. Therefore, it is not only necessary to consider the stability of the positive and negative sequence system, but there is also the need to consider the stability of the zero-sequence system when performing stability analysis for the LCL-TFSCI. In this paper, a small-signal impedance model considering the zero-sequence loop of LCL-TFSCI is firstly established. Subsequently, the instability risk is revealed when LCL-TFSCI is connected to the grid with parallel compensation capacitors. Through instability analysis, an impedance-reshaping method based on the complex filter and combined differential elements is proposed, which can reshape the impedance characteristic of LCL-TFSCI within the wide frequency range and expand the stability domain of the grid-connected system. Finally, the proposed method is verified by simulation and experiment.
In open‐winding permanent magnet synchronous machine (OW‐PMSM) applied in electric vehicular system, two voltage sources composed of battery packs are applied. For safety and better performance, the over‐discharge on one of these two voltage sources should be avoided and their state of charges (SOCs) should be controlled in balance. On this basis, a reference voltage redistribution‐based control scheme is proposed to balance the SOCs of OW‐PMSM system in this letter, which utilizes the SOCs of the two voltage sources to distribute the reference voltages into two inverters. With the proposed method, the SOCs of the two voltage sources can be controlled in balance dynamically, while the synthesis of the reference voltage is not affected. The performance of the proposed method is validated experimentally.
In some key areas, fault-tolerant control is usually needed in order to enable the motor to operate continuously in fault mode. Given that it is difficult to detect the zero-sequence current of the open winding permanent magnet synchronous motor after the phase break fault occurs, the traditional zero-sequence current suppression strategy is no longer applicable after the phase break fault occurs. Therefore, a zero-sequence current suppression strategy for a common DC bus under a phase break fault is proposed in this paper. By establishing the mathematical model between the current component in the synchronous coordinate system and the current component and the zero-sequence current in the static coordinate system, the relationship between the non-fault phase current and the zero-sequence current in the open phase fault is analyzed. A method of suppressing the zero-sequence current by using proportional integral double resonance in a zero-sequence current control loop is proposed. In addition, according to the large number of calculations in traditional space vector modulation (SVPWM)—such as sector judgment and coordinate transformation—a decoupling modulation algorithm is proposed to modulate the reference voltage vector. Finally, the experimental platform for the common DC bus open winding permanent magnet synchronous motor is built, and the zero-sequence current suppression method for the common DC bus OW-PMSM under phase break fault is verified experimentally.
In a distributed generation system, the all-pass-filter phase-locked loop (APF-PLL) is a commonly used method for grid synchronization. However, the coupling effect between APF-PLL and current control loop increases the risk of oscillation instability for the inverter in the weak grid. At present, there are few effective methods to solve the adverse effect of APF-PLL on the inverter-grid interconnection system in the weak grid. Therefore, a small-signal impedance model of the inverter considering the dual d-q frame brought by APF-PLL is first established. Then the reason for the inverter instability caused by APF-PLL in the weak grid is analyzed. Subsequently, an impedance reshaping method based on a modified first-order filter PLL with a complex coefficient filter (CCF-MFOF-PLL) and its parameter optimization design method are proposed. Finally, the experimental results verify that the proposed method widens the stable range of the inverter and ensures the stable operation of the inverter even with the large grid impedance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.