Global warming, which is mainly caused by greenhouse gases, can greatly aggravate land degradation; therefore, the examination of the NEP (net ecosystem productivity) and the analysis of its response to climate change are very critical for understanding carbon cycling. Based on Moderate Resolution Imaging Spectroradiometer data, meteorological data, and soil organic carbon data, this study examined the NEP from 2000 to 2013 and investigated how ongoing climate change affects the NEP. The study results indicate that the terrestrial ecosystems in China generally act as net carbon sinks with increasing NEP values. The western inland region and part of northeast China mainly act as carbon sources, with the NEP exhibiting an increasing trend, whereas the other regions mainly act as carbon sinks, with the NEP showing a decreasing trend across large areas of southern China, where the most obvious land degradation occurs. Homogeneity and heterogeneity co‐occur. The general pattern is that ecosystems with high biomass usually have a high NEP value, acting as high carbon sinks in relatively wet and warm environments, but have a low value and even act as carbon sources in dry and cold environments. Both moderate precipitation and temperature are essential in increasing the NEP, whereas lower precipitation and temperatures might have negative effects. Heterogeneity also widely breaks up the general pattern. Temporally, more NEP grids were positively correlated with changes in temperature and showed stronger correlation coefficients with temperature than with precipitation, but the grids showing a significant correlation with these factors accounted for only a small proportion of the total for both precipitation and temperature.
Land use change not only directly influences carbon storage in terrestrial ecosystems but can also cause energy-related carbon emissions. This study examined spatiotemporal land use change across Jiangsu Province, China; calculated vegetation carbon storage loss caused by land use change and energy-related carbon emissions; analysed the relationship among land use change, carbon emissions and social-economic development; and optimized land use structure to maximize carbon storage. Our study found that 13.61% of the province’s land area underwent a change in type of land use between 1995 and 2010, mainly presented as built-up land expansion and cropland shrinkage, especially in southern Jiangsu. Land use change caused a 353.99 × 104 t loss of vegetation carbon storage loss. Energy-related carbon emissions increased 2.5 times from 1995 to 2013; the energy consumption structure has been improved to some extent while still relying on coal. The selected social-economic driving forces have strong relationships with carbon emissions and land use changes, while there are also other determinants driving land use change, such as land use policy. The optimized land use structure will slow the rate of decline in vegetation carbon storage compared with the period between 1995 and 2010 and will also reduce energy-related carbon emissions by 12%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.