Let J ⊂ I be monomial ideals. We show that the Stanley depth of I/J can be computed in a finite number of steps. We also introduce the fdepth of a monomial ideal which is defined in terms of prime filtrations and show that it can also be computed in a finite number of steps. In both cases it is shown that these invariants can be determined by considering partitions of suitable finite posets into intervals.
Abstract. In this paper we study the resolution of a facet ideal associated with a special class of simplicial complexes introduced by Faridi. These simplicial complexes are called trees, and are a generalization (to higher dimensions) of the concept of a tree in graph theory. We show that the Koszul homology of the facet ideal I of a tree is generated by the homology classes of monomial cycles, determine the projective dimension and the regularity of I if the tree is 1-dimensional, show that the graded Betti numbers of I satisfy an alternating sum property if the tree is connected in codimension 1, and classify all trees whose facet ideal has a linear resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.