Background
Ovarian cancer is the most common malignant tumor of the female reproductive tract. Chemoresistance is a major challenge for current ovarian cancer therapy. However, the mechanism underlying epithelial ovarian cancer (EOC) chemoresistance is not completely uncovered. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is an important intracellular pathway in regulating cell cycle, quiescence, and proliferation. The aim of this study is to investigate the role of PI3K/Akt/mTOR signaling pathway and its association with epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) marker expression in EOC chemoresistance.
Methods
The expressions of EMT and CSC markers were detected by immunofluorescence, western blot, and quantitative real-time PCR. BEZ235, a dual PI3K/mTOR inhibitor, was employed to investigate the role of PI3K/Akt/ mTOR signaling in regulating EMT and CSC marker expression. Students’ t test and one-way ANOVA with Tukey’s post-hoc test were used to compare the data from different groups.
Results
We found that EMT and CSC marker expression were significantly enhanced in chemoresistant EOC cells, which was accompanied by the activation of PI3K/Akt/mTOR signaling. Compared with single cisplatin treatment, combined treatment with BEZ235 and cisplatin significantly disrupted the colony formation ability, induced higher ROS level and more apoptosis in chemoresistant EOC cells. Furthermore, the combination approach effectively inhibited PI3K/Akt/mTOR signaling pathway, reversed EMT, and decreased CSC marker expression in chemoresistant EOC cells compared with cisplatin mono-treatment.
Conclusions
Our results first demonstrate that EMT and enhanced CSC marker expression triggered by activated PI3K/Akt/mTOR signaling are involved in the chemoresistance of EOC, and BEZ235 in combination with cisplatin might be a promising treatment option to reverse EOC chemoresistance.
Electronic supplementary material
The online version of this article (10.1186/s12885-019-5824-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.