The amorphous TiO2 derived from hydroxylation has become an effective approach for the enhancement of photocatalytic activity of TiO2 since a kind of special black TiO2 was prepared by engineering disordered layers on TiO2 nanocrystals via hydrogenation. In this contribution, we prepared totally amorphous TiO2 with various degrees of blackness by introducing hydroxyls via ultrasonic irradiation, through which can we remarkably enhance the photocatalytic activity of TiO2 with improved light harvesting and narrowed band gap.
A hydrothermal precursor was first obtained by isopropyl titanate reacting with tetramethylammonium hydroxide (TMAOH), which acts as a source of nitrogen and carbon. A facile post-thermal treatment was employed to enhance the crystallinity and visible light photocatalytic activity of the as-prepared precursor. The resulting products of post-thermal treatment between 200 °C and 700 °C display different colours from brown to white. Black N-doped TiO2 nanoparticles modified with carbon (denoted as N-TiO2/C) were obtained at 300 °C, while yellow N-doped TiO2 nanoparticles (denoted as N-TiO2) were obtained at 500 °C. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were applied to characterize N-TiO2/C, N-TiO2 and the evolution process during thermal treatment. The results show that for both N-TiO2/C and N-TiO2, nitrogen was doped into the lattice, thus narrowing the band gap and increasing the absorption in the visible light region. Moreover, for N-TiO2/C, the carbon species modified on the surface and between the nanocrystals enhanced the visible light harvesting and increased the adsorption of the dye in the photodegradation measurement. The photocatalytic performance under visible light irradiation is N-TiO2/C > N-TiO2 > undoped TiO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.