Abstract-Memory access efficiency is a key factor in fully utilizing the computational power of graphics processing units (GPUs). However, many details of the GPU memory hierarchy are not released by GPU vendors. In this paper, we propose a novel fine-grained microbenchmarking approach and apply it to three generations of NVIDIA GPUs, namely Fermi, Kepler and Maxwell, to expose the previously unknown characteristics of their memory hierarchies. Specifically, we investigate the structures of different GPU cache systems, such as the data cache, the texture cache and the translation look-aside buffer (TLB). We also investigate the throughput and access latency of GPU global memory and shared memory. Our microbenchmark results offer a better understanding of the mysterious GPU memory hierarchy, which will facilitate the software optimization and modelling of GPU architectures. To the best of our knowledge, this is the first study to reveal the cache properties of Kepler and Maxwell GPUs, and the superiority of Maxwell in shared memory performance under bank conflict.
Nowadays, GPUs are widely used to accelerate many high performance computing applications. Energy conservation of such computing systems has become an important research topic. Dynamic voltage/frequency scaling (DVFS) is proved to be an appealing method for saving energy for traditional computing centers. However, there is still a lack of firsthand study on the effectiveness of GPU DVFS. This paper presents a thorough measurement study that aims to explore how GPU DVFS affects the system energy consumption. We conduct experiments on a real GPU platform with 37 benchmark applications. Our results show that GPU voltage/frequency scaling is an effective approach to conserving energy. For example, by scaling down the GPU core voltage and frequency, we have achieved an average of 19.28% energy reduction compared with the default setting, while giving up no more than 4% of performance. For all tested GPU applications, core voltage scaling is significantly effective to reduce system energy consumption. Meanwhile the effects of scaling core frequency and memory frequency depend on the characteristics of GPU applications.
Energy efficiency has become one of the top design criteria for current computing systems. The dynamic voltage and frequency scaling (DVFS) has been widely adopted by laptop computers, servers, and mobile devices to conserve energy, while the GPU DVFS is still at a certain early age. This paper aims at exploring the impact of GPU DVFS on the application performance and power consumption, and furthermore, on energy conservation. We survey the state-of-the-art GPU DVFS characterizations, and then summarize recent research works on GPU power and performance models. We also conduct real GPU DVFS experiments on NVIDIA Fermi and Maxwell GPUs. According to our experimental results, GPU DVFS has significant potential for energy saving. The effect of scaling core voltage/frequency and memory voltage/frequency depends on not only the GPU architectures, but also the characteristic of GPU applications.
Memory access efficiency is a key factor for fully exploiting the computational power of Graphics Processing Units (GPUs). However, many details of the GPU memory hierarchy are not released by the vendors. We propose a novel fine-grained benchmarking approach and apply it on two popular GPUs, namely Fermi and Kepler, to expose the previously unknown characteristics of their memory hierarchies. Specifically, we investigate the structures of different cache systems, such as data cache, texture cache, and the translation lookaside buffer (TLB). We also investigate the impact of bank conflict on shared memory access latency. Our benchmarking results offer a better understanding on the mysterious GPU memory hierarchy, which can help in the software optimization and the modelling of GPU architectures. Our source code and experimental results are publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.