The miR-294/miR-302 microRNAs promote the abbreviated G1 phase of the embryonic stem cell (ESC) cell cycle and suppress differentiation induced by let-7. Here we evaluated the role of the Retinoblastoma (Rb) family proteins in these settings. Under normal growth conditions miR-294 promoted the rapid G1-S transition independent of the Rb family. In contrast, miR-294 suppressed the further accumulation of cells in G1 in response to nutrient deprivation and cell-cell contact in an Rb dependent fashion. We uncovered five additional miRNAs (miRs-26a, -99b, -193, -199a-5p, and 218) that silenced ESC self-renewal in the absence of other miRNAs, all of which were antagonized by miR-294/302. Four of the six differentiation-inducing miRNAs induced an Rb-dependent G1 accumulation. However, all six still silenced self-renewal in the absence of the Rb proteins. These results show that the miR-294/miR-302 family acts through Rb dependent and independent pathways to regulate the G1 restriction point and the silencing of self-renewal respectively.
Epidermal growth factor receptor (EGFR) is a clinical therapeutic target to treat a subset of non-small cell lung cancer (NSCLC) harboring EGFR mutants. However, some patients with a similar kind of EGFR mutation show intrinsic resistance to tyrosine kinase inhibitors (TKI). It indicates that other key molecules are involved in the survival of these cancer cells. We showed here that 2-[(aminocarbonyl)amino]-5 -(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1), a previously reported inhibitor of IkB kinases (IKK), blocked STAT3 recruitment to upstream kinases by docking into SH2 domain of STAT3 and attenuated STAT3 activity induced by cytokines and cytoplasmic tyrosine kinases. TPCA-1 is an effective inhibitor of STAT3 phosphorylation, DNA binding, and transactivation in vivo. It selectively repressed proliferation of NSCLC cells with constitutive STAT3 activation. In addition, using pharmacologic and genetic approaches, we found that both NF-kB and STAT3 could regulate the transcripts of interleukin (IL)-6 and COX-2 in NSCLC harboring EGFR mutations. Moreover, gefitinib treatment only did not efficiently suppress NF-kB and STAT3 activity. In contrast, we found that treatment with TKIs increased phosho-STAT3 level in target cells. Inhibiting EGFR, STAT3, and NF-kB by combination of TKIs with TPCA-1 showed increased sensitivity and enhanced apoptosis induced by gefitinib. Collectively, in this work, we identified TPCA-1 as a direct dual inhibitor for both IKKs and STAT3, whereas treatment targeting EGFR only could not sufficiently repress NF-kB and STAT3 pathways for lung cancers harboring mutant EGFR. Therefore, synergistic treatment of TPCA-1 with TKIs has potential to be a more effective strategy for cancers. Mol Cancer Ther; 13(3); 617-29. Ó2014 AACR.
Many community experiments have shown a positive relationship between plant biodiversity and community productivity, with biodiversity measured in multiple ways based on taxonomy, function, and phylogeny. Whether these different measures of biodiversity and their interactions explain variation in productivity in natural assemblages has rarely been tested. In a removal experiment using natural alpine assemblages in the Tibetan Plateau, we manipulated species richness and functional diversity to examine how different measures of biodiversity predict aboveground biomass production. We combined different biodiversity measures (functional, phylogenetic, richness, evenness) in generalized linear models to determine which combinations provided the most parsimonious explanations of variation in biomass production. Although multivariate functional diversity indices alone consistently explained more variation in productivity than other single measures, phylogenetic diversity and plant height represented the most parsimonious combination. In natural assemblages, single metrics alone cannot fully explain ecosystem function. Instead, a combination of phylogenetic diversity and traits with weak or no phylogenetic signal is required to explain the effects of biodiversity loss on ecosystem function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.