Long noncoding RNAs (lncRNAs) are emerging as a class of important regulators participating in various biological functions and disease processes. With the widespread application of next-generation sequencing technologies, large numbers of lncRNAs have been identified, producing plenty of lncRNA annotation resources in different contexts. However, at present, we lack a comprehensive overview of these lncRNA annotation resources. In this study, we reviewed 24 currently available lncRNA annotation resources referring to > 205 000 lncRNAs in over 50 tissues and cell lines. We characterized these annotation resources from different aspects, including exon structure, expression, histone modification and function. We found many distinct properties among these annotation resources. Especially, these resources showed diverse chromatin signatures, remarkable tissue and cell type dependence and functional specificity. Our results suggested the incompleteness and complementarity of current lncRNA annotations and the necessity of integration of multiple resources to comprehensively characterize lncRNAs. Finally, we developed 'LNCat' (lncRNA atlas, freely available at http://biocc.hrbmu.edu.cn/LNCat/), a user-friendly database that provides a genome browser of lncRNA structures, visualization of different resources from multiple angles and download of different combinations of lncRNA annotations, and supports rapid exploration, comparison and integration of lncRNA annotation resources. Overall, our study provides a comprehensive comparison of numerous lncRNA annotations, and can facilitate understanding of lncRNAs in human disease.
Color mutation is a common, easily identifiable phenomenon in higher plants. Color mutations usually affect the photosynthetic efficiency of plants, resulting in poor growth and economic losses. Therefore, leaf color mutants have been unwittingly eliminated in recent years. Recently, however, with the development of society, the application of leaf color mutants has become increasingly widespread. Leaf color mutants are ideal materials for studying pigment metabolism, chloroplast development and differentiation, photosynthesis and other pathways that could also provide important information for improving varietal selection. In this review, we summarize the research on leaf color mutants, such as the functions and mechanisms of leaf color mutant-related genes, which affect chlorophyll synthesis, chlorophyll degradation, chloroplast development and anthocyanin metabolism. We also summarize two common methods for mapping and cloning related leaf color mutation genes using Map-based cloning and RNA-seq, and we discuss the existing problems and propose future research directions for leaf color mutants, which provide a reference for the study and application of leaf color mutants in the future.
Passivation of the Mg anode surface in conventional electrolytes constitutes a critical issue for practical Mg batteries. In this work, a perfluorinated tert‐butoxide magnesium salt, Mg(pftb)2, is codissolved with MgCl2 in tetrahydrofuran (THF) to form an all‐magnesium salt electrolyte. Raman spectroscopy and density function theory calculation confirm that [Mg2Cl3·6THF]+[Mg(pftb)3]− is the main electrochemically active species of the electrolyte. The proper lowest unoccupied molecular orbital energy level of the [Mg(pftb)3]− anion enables in situ formation of a stable solid electrolyte interphase (SEI) on Mg anodes. A detailed analysis of the SEI reveals that its stability originates from a dual‐layered organic/inorganic hybrid structure. Mg//Cu and Mg//Mg cells using the electrolyte achieve a high Coulombic efficiency of 99.7% over 3000 cycles, and low overpotentials over ultralong‐cycle lives of 8100, 3000, and 1500 h at current densities of 0.5, 1.0, and 2.0 mA cm−2, respectively. The robust SEI layer, once formed on a Mg electrode, is also shown highly effective in suppressing side‐reactions in a TFSI−‐containing electrolyte. A high Coulombic efficiency of 99.5% over 800 cycles is also demonstrated for a Mg//Mo6S8 full cell, showing great promise of the SEI forming electrolyte in future Mg batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.