Accurate nuclear instance segmentation and classification in histopathologic images are the foundation of cancer diagnosis and prognosis. Several challenges are restricting the development of accurate simultaneous nuclear instance segmentation and classification. Firstly, the visual appearances of different category nuclei could be similar, making it difficult to distinguish different types of nuclei. Secondly, it is thorny to separate highly clustering nuclear instances. Thirdly, rare current studies have considered the global dependencies among diverse nuclear instances. In this article, we propose a novel deep learning framework named TSHVNet which integrates multiattention modules (i.e., Transformer and SimAM) into the state-of-the-art HoVer-Net for the sake of a more accurate nuclear instance segmentation and classification. Specifically, the Transformer attention module is employed on the trunk of the HoVer-Net to model the long-distance relationships of diverse nuclear instances. The SimAM attention modules are deployed on both the trunk and branches to apply the 3D channel and spatial attention to assign neurons with appropriate weights. Finally, we validate the proposed method on two public datasets: PanNuke and CoNSeP. The comparison results have shown the outstanding performance of the proposed TSHVNet network among the state-of-art methods. Particularly, as compared to the original HoVer-Net, the performance of nuclear instance segmentation evaluated by the PQ index has shown 1.4% and 2.8% increases on the CoNSeP and PanNuke datasets, respectively, and the performance of nuclear classification measured by F 1 _score has increased by 2.4% and 2.5% on the CoNSeP and PanNuke datasets, respectively. Therefore, the proposed multiattention-based TSHVNet is of great potential in simultaneous nuclear instance segmentation and classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.