We revisit the mechanism of high harmonic generation (HHG) from solids by comparing HHG in laser fields with different ellipticities but a constant maximum amplitude. It is shown that the cutoff of HHG is strongly extended in a circularly polarized field. Moreover, the harmonic yield with large ellipticity is comparable to or even higher than that in the linearly polarized field. To understand the underlying physics, we develop a reciprocal-space-trajectory method, which explains HHG in solids by a trajectory ensemble from different ionization times and different initial states in the reciprocal space. We show that the cutoff extension is related to an additional pre-acceleration step prior to ionization, which has been overlooked in solids. By analyzing the trajectories and the time-frequency spectrogram, we show that the HHG in solids cannot be interpreted in terms of the classical re-collision picture alone. Instead, the radiation should be described by the electronhole interband polarization, which leads to the unusual ellipticity dependence. We propose a new four-step model to understand the mechanism of HHG in solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.