The transition from controlled drug use to drug addiction depends on an interaction between a vulnerable individual, their environment and a drug. Here we tested the hypothesis that conditions under which individuals live influence behavioral vulnerability traits and experiential factors operating in the drug taking environment to determine the vulnerability to addiction. The role of behavioral vulnerability traits in mediating the influence of housing conditions on the tendency to acquire cocaine self-administration was characterized in 48 rats housed in either an enriched (EE) or a standard (SE) environment. Then, the influence of these housing conditions on the individual vulnerability to develop addiction-like behavior for cocaine or alcohol was measured in 72 EE or SE rats after several months of cocaine self-administration or intermittent alcohol drinking, respectively. The determining role of negative experiential factors in the drug taking context was further investigated in 48 SE rats that acquired alcohol drinking to self-medicate distress in a schedule-induced polydipsia procedure. The environment influenced the acquisition of drug intake through its effect on behavioral markers of resilience to addiction. In contrast, the initiation of drug taking as a coping strategy or in a negative state occasioned by the contrast between enriched housing conditions and a relatively impoverished drug taking setting, facilitated the development of compulsive cocaine and alcohol intake. These data indicate that addiction vulnerability depends on environmentally determined experiential factors, and suggest that initiating drug use through negative reinforcement-based selfmedication facilitates the development of addiction in vulnerable individuals.
This paper introduces new developments in an outage prediction model (OPM) for an electric distribution network in the Northeastern United States and assesses their significance to the OPM performance. The OPM uses regression tree models fed by numerical weather prediction outputs, spatially distributed information on soil, vegetation, electric utility assets, and historical power outage data to forecast the number and spatial distribution of outages across the power distribution grid. New modules introduced hereby consist in 1) a storm classifier based on weather variables; 2) a multimodel optimization of regression tree output; and 3) a post-processing routine for more accurately describing tree-leaf conditions. Model implementations are tested through leave-one-storm-out cross-validations performed on 120 storms of varying intensity and characteristics. The results show that the median absolute percentage error of the new OPM version decreased from 130% to 59% for outage predictions at the service territory level, and the OPM skills for operational forecasts are consistent with the skills based on historical storm analyses. INDEX TERMS Power distribution, extreme events, machine learning, numerical weather predictions, power outage prediction.
In this study, the authors investigate the use of high-resolution simulations from the Weather Research and Forecasting Model (WRF) for evaluating satellite rainfall biases of flood-inducing storms in mountainous areas. A probability matching approach is applied to evaluate a power-law relationship between satellite-retrieved and WRF-simulated rain rates over the storm domain. Satellite rainfall in this study is from the NOAA Climate Prediction Center morphing technique (CMORPH). Results are presented based on analyses of five heavy precipitation events that induced flash floods in northern Italy and southern France complex terrain basins. The WRF-based adjusted CMORPH rain rates exhibited improved error statistics against independent radar rainfall estimates. The authors show that the adjustment procedure reduces the underestimation of high rain rates, thus moderating the magnitude dependence of CMORPH rainfall bias. The Heidke skill score for the WRF-based adjusted CMORPH was consistently higher for a range of rain rate thresholds. This is an indication that the adjustment procedure ameliorates the satellite rain rates to provide a better estimation. Results also indicate that the low rain detection of CMORPH technique is also identifiable in the WRF–CMORPH comparison; however, the adjustment procedure herein does not incorporate this effect on the satellite rainfall bias adjustment.
This paper evaluates the use of precipitation forecasts from a numerical weather prediction (NWP) model for near-real-time satellite precipitation adjustment based on 81 flood-inducing heavy precipitation events in seven mountainous regions over the conterminous United States. The study is facilitated by the National Center for Atmospheric Research (NCAR) real-time ensemble forecasts (called model), the Integrated Multi-satellitE Retrievals for GPM (IMERG) near-real-time precipitation product (called raw IMERG) and the Stage IV multi-radar/multi-sensor precipitation product (called Stage IV) used as a reference. We evaluated four precipitation datasets (the model forecasts, raw IMERG, gauge-adjusted IMERG and model-adjusted IMERG) through comparisons against Stage IV at six-hourly and event length scales. The raw IMERG product consistently underestimated heavy precipitation in all study regions, while the domain average rainfall magnitudes exhibited by the model were fairly accurate. The model exhibited error in the locations of intense precipitation over inland regions, however, while the IMERG product generally showed correct spatial precipitation patterns. Overall, the model-adjusted IMERG product performed best over inland regions by taking advantage of the more accurate rainfall magnitude from NWP and the spatial distribution from IMERG. In coastal regions, although model-based adjustment effectively improved the performance of the raw IMERG product, the model forecast performed even better. The IMERG product could benefit from gauge-based adjustment, as well, but the improvement from model-based adjustment was consistently more significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.