With the increasing concerns about the environmental issues of forest health tourism, the environmentally responsible behavior of tourists becomes the key to the sustainable development of forest health tourism. Therefore, the article takes experiential value as an entrance point, innovatively introduces the scenario of forest health tourism, and divides experiential value into the functional value, hedonic value and symbolic value. Then, a theoretical model of the experiential value of forest health tourism, two place perception concepts of place attachment, and environmentally responsible behavior is constructed. The research team assembled 498 valid questionnaires for the empirical investigation in the Fuzhou National Forest Park in China. Structural equation modeling was used to test the theoretical hypotheses and to explore the cumulative driving effects of the experiential value and place attachment in forest health tourism on environmentally responsible behavior. The results showed that the experiential value of forest health tourism had a significant positive effect on the environmentally responsible behavior. It also had a significant positive effect on place attachment, which also strengthened the environmentally responsible behavior. In addition, place attachment is considered to be an important mediator of the effect of forest health tourism’s experiential value on the intention of environmentally responsible behavior. Place attachment is a more important element driving environmentally responsible behavior than the elements of the forest health tourism’s experiential value. Place attachment has a greater impact on tourists’ environmentally responsible behavior than place identification. This highlights the importance of place attachment in influencing the environmentally responsible behavior of tourists. These results provide a useful theoretical basis and practical reference for promoting environmentally responsible behavior in forest health tourism.
Studying the impact of various factors on environmental perception is crucial because humans live in an environment where these factors interact and blend. The thermal-acoustic environment is the major factor that affects the overall perception of urban parks. This study focuses on urban parks in the subtropical region, with Xihu Park in Fuzhou, China, as the research area. Through measurements and questionnaires, this study explores the effects of the thermal-acoustic environment in urban parks on subjective evaluation (thermal assessment, acoustic assessment, and overall environmental assessment). The results reveal that: (1) a higher temperature significantly increases the sensation of heat and lowers thermal comfort, heat acceptance, and overall thermal environment evaluation scores. The type of sound source has a significant positive impact on thermal assessment, and the higher the ranking of the sound source type, the greater its positive impact on thermal assessment. (2) Regarding acoustic evaluation, higher sound pressure level is associated with more negative subjective ratings of loudness, harshness, intensity, and excitement. In contrast, positive sound sources can enhance comfort, preference, disorder, coordination, and overall soundscape evaluation. Additionally, temperature increases tend to result in more negative harshness, intensity, and coordination ratings. The interaction between temperature and sound pressure level also significantly affects subjective loudness, harshness, and intensity. (3) Overall environmental evaluation is also affected by temperature, with increasing temperatures leading to decreased comfort and satisfaction while increasing irritation. High sound pressure environments result in worse overall irritation ratings, while positive sound sources can significantly enhance overall comfort, irritation, and satisfaction ratings. Furthermore, the interaction between temperature and sound pressure level significantly impacts overall irritation and satisfaction ratings. These findings are significant for managing and improving the park’s thermal environment and soundscape, providing a practical framework for landscape architects.
Quantifying the water layout factors in a campus square helps to lay out water bodies more scientifically and utilize the microclimate effect to alleviate the heat and humidity of campus squares in summer. The West Gate Square of Fujian Agriculture and Forestry University in China has been used as the primary theoretical model, and the landscape pattern index from landscape ecology has been used to quantify the scale, shape, and dispersion of water bodies. Consider the typical weather, the summer solstice, as the experiment time. The relationship between the water body layout factors and cooling effect, the humidification effect, and the wind speed is clarified from both temporal and spatial perspectives. The data were analyzed with ENVI-met and Arcgis software. Then, the optimum campus square water body layout mode was concluded. The results show that: (1) The scale, dispersion, and shape of the water body has a significant effect on the campus temperature and humidity, while the effect on wind speed is not significant. (2) From the cooling and humidifying effect, the ranking of the regulating ability of the water body layout factors is scale > shape > dispersion; the ranking of the influence range is shape > scale > dispersion. (3) When the boundary of the square is determined, the optimum water body layout mode is that the water body area accounts for 36% of the total square area. The shape of the water body is concentrated and not dispersed square. When the water body layout is determined, the optimum layout mode of the boundary is length:width = 1:2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.