Grey wolf optimizer (GWO) is an up-to-date nature-inspired optimization algorithm which has been used for solving many of the real-world applications since it was proposed. In the standard GWO, individuals are guided by the three dominant wolves alpha, beta, and delta in the leading hierarchy of the swarm. These three wolves provide their information about the potential locations of the global optimum in the search space. This learning mechanism is easy to implement. However, when the three wolves are in conflicting directions, an individual may not obtain better knowledge to update its position. To improve the utilization of the population knowledge, in this paper, we proposed a grey wolf optimizer based on the dimensional learning strategy (DLGWO). In the DLGWO, the three dominant wolves construct an exemplar wolf through the dimensional learning strategy (DLS) to guide the grey wolves in the swarm. Thereafter, to reinforce the exploration ability of the algorithm, the Levy flight is also utilized in the proposed method. 23 classic benchmark functions and engineering problems are used to test the effectiveness of the proposed method against the standard GWO, variants of the GWO, and other metaheuristic algorithms. The experimental results show that the proposed DLGWO has good performance in solving the global optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.