Biological experiments discovered that the receptive field of neurons in the primary visual cortex of an animal's visual system is dynamic and capable of being altered by the sensory context. However, in a typical convolution neural network (CNN), a unit's response only comes from a fixed receptive field, which is generally determined by the preset kernel size in each layer. In this work, we simulate the dynamic receptive field mechanism in the biological visual system (BVS) for application in object detection and image recognition. We proposed a Dynamic Receptive Field module (DRF), which can realize the global information-guided responses under the premise of a slight increase in parameters and computational cost. Specifically, we design a transformer-style DRF module, which defines the correlation coefficient between two feature points by their relative distance. For an input feature map, we first divide the relative distance corresponding to different receptive field regions between the target feature point and its surrounding feature points into N different discrete levels. Then, a vector containing N different weights is automatically learned from the dataset and assigned to each feature point, according to the calculated discrete level that this feature point belongs. In this way, we achieve a correlation matrix primarily measuring the relationship between the target feature point and its surrounding feature points. The DRF-processed responses of each feature point are computed by multiplying its corresponding correlation matrix with the input feature map, which computationally equals to accomplish a weighted sum of all feature points exploiting the global and long-range information as the weight. Finally, by superimposing the local responses calculated by a traditional convolution layer with DRF responses, our proposed approach can integrate the rich context information among neighbors and the long-range dependencies of background into the feature maps. With the proposed DRF module, we achieved significant performance improvement on four benchmark datasets for both tasks of object detection and image recognition. Furthermore, we also proposed a new matching strategy that can improve the detection results of small targets compared with the traditional IOU-max matching strategy.
The introduction of various deep neural network architectures has greatly advanced aircraft pose estimation using high-resolution images. However, realistic airport surface monitors typically take low-resolution (LR) images, and the results of the aircraft pose estimation are far from being accurate enough to be considered acceptable because of long-range capture. To fill this gap, we propose a brand-new, end-to-end low-resolution aircraft pose estimate network (LRF-SRNet) to address the problem of estimating the pose of poor-quality airport surface surveillance aircraft images. The method successfully combines the pose estimation method with the super-resolution (SR) technique. Specifically, to reconstruct high-resolution aircraft images, a super-resolution network (SRNet) is created. In addition, an essential component termed the large receptive field block (LRF block) helps estimate the aircraft’s pose. By broadening the neural network’s receptive field, it enables the perception of the aircraft’s structure. Experimental results demonstrate that, on the airport surface surveillance dataset, our method performs significantly better than the most widely used baseline methods, with AP exceeding Baseline and HRNet by 3.1% and 4.5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.