Many experiments investigating magnetic-field tuned superconductor-insulator transition (H-SIT) often exhibit low-temperature resistance saturation, which is interpreted as an anomalous metallic phase emerging from a ‘failed superconductor’, thus challenging conventional theory. Here we study a random granular array of indium islands grown on a gateable layer of indium-oxide. By tuning the intergrain couplings, we reveal a wide range of magnetic fields where resistance saturation is observed, under conditions of careful electromagnetic filtering and within a wide range of linear response. Exposure to external broadband noise or microwave radiation is shown to strengthen the tendency of superconductivity, where at low field a global superconducting phase is restored. Increasing magnetic field unveils an ‘avoided H-SIT’ that exhibits granularity-induced logarithmic divergence of the resistance/conductance above/below that transition, pointing to possible vestiges of the original emergent duality observed in a true H-SIT. We conclude that anomalous metallic phase is intimately associated with inherent inhomogeneities, exhibiting robust behavior at attainable temperatures for strongly granular two-dimensional systems.
The magnetic-field–tuned superconductor-to-insulator transition was studied in a hybrid system of superconducting indium islands, deposited on an indium oxide (InOx) thin film, which exhibits global superconductivity at low magnetic fields. Vacuum annealing was used to tune the conductivity of the InOx film, thereby tuning the inergrain coupling and the nature of the transition. The hybrid system exhibits a “giant” magnetoresistance above the magnetic-field–tuned superconductor-to-insulator transition (H-SIT), with critical behavior similar to that of uniform InOx films but at much lower magnetic fields, that manifests the duality between Cooper pairs and vortices. A key feature of this hybrid system is the separation between the quantum criticality and the onset of nonequilibrium behavior.
Resistivity saturation is found on both superconducting and insulating sides of an “avoided” magnetic-field-tuned superconductor-to-insulator transition (H-SIT) in a two-dimensional In/InO x composite, where the anomalous metallic behavior cuts off conductivity or resistivity divergence in the zero-temperature limit. The granular morphology of the material implies a system of Josephson junctions (JJs) with a broad distribution of Josephson coupling E J and charging energy E C , with an H-SIT determined by the competition between E J and E C . By virtue of self-duality across the true H-SIT, we invoke macroscopic quantum tunneling effects to explain the temperature-independent resistance where the “failed superconductor” side is a consequence of phase fluctuations and the “failed insulator” side results from charge fluctuations. While true self-duality is lost in the avoided transition, its vestiges are argued to persist, owing to the incipient duality of the percolative nature of the dissipative path in the underlying random JJ system.
Abstract:Barkhausen current noise is used to probe the slow field-driven conversion of the glassy relaxor ferroelectric state to an ordered ferroelectric (FE) state. The frequent presence of distinct micron-scale Barkhausen events well before the polarization current starts to speed up shows that the process is not a conventional nucleation-limited one. The prevalence of reverse switching events near the onset of the rapid part of the transition strongly indicates that electric dipole interactions play a key role. The combination of Barkhausen noise changes and changes in the complex dielectric response indicate that the process consists of an initial mixed-alignment domain formation stage followed by growth of the domains aligned with the applied field.
Large low-frequency polarization noise is found in some perovskite relaxor ferroelectrics when they are partially polarized, regardless of whether the polarization is accompanied by an applied electric field. The noise appears both in the ferroelectric and relaxor states, including the nominally ergodic paraelectric state at temperatures above the susceptibility peak. Since it is present whenever the samples have non-zero average piezoelectric coefficients, but not otherwise evident, it appears to be a response to mechanical strain changes. Dependence of the noise on sample thermal history indicates that non-equilibrium strain relaxation is the source, even in the temperature range for which the sample is nominally ergodic. Non-equilibrium noise in the absence of net piezoelectricity is found at somewhat higher frequencies. Related materials lacking a metastable non-equilibrium cubic bulk phase and a symmetry-broken surface layer show very little of the anomalous low-frequency noise. The implications for a non-equilibrium origin of the skin effect are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.