Background and Purpose. Premature ovarian insufficiency (POI) is a serious reproductive disease in females that is characterized by menstrual and ovulation disorders and infertility. The clinical efficacy of complementary and alternative medicine (CAM) has been reported in POI, including compound Chinese medicine. Zishen Yutai Pills (ZSYTP), a well-known patented Chinese medicine, has been widely used for treating POI; however, the pharmacological mechanism and molecular targets of ZSYTP remain unknown. Here, we systematically elucidated the pharmacological mechanism of ZSYTP on POI using a network pharmacology approach and further validated our findings with molecular docking. Methods. A comprehensive strategy based on several Chinese herb databases and chemical compound databases was established to screen active compounds of ZSYTP and predict target genes. For network pharmacological analysis, network construction and gene enrichment analysis were conducted and further verified by molecular docking. Results. A total of 476 target genes of ZSYTP were obtained from 205 active compounds. 13 herbs of ZSYTP overlapped on 8 active compounds based on the compound-target-disease network (C-T network). 20 biological processes and 9 pathways were strongly connected to the targets of ZSYTP in treating POI, including negative regulation of gene expression, mRNA metabolic process, hypoxia-inducible factor 1 (HIF-1) signaling pathway, and gluconeogenesis. Finally, molecular docking was visualized. Conclusion. Intriguingly, the signal pathways and biological processes uncovered in this study implicate inflamm-aging and glucose metabolism as potential pathological mechanisms of POI. The therapeutic effect of ZSYTP could be mediated by regulating glucose metabolism and HIF-1 signal pathway. Collectively, this study sheds light on the therapeutic potential of ZSYTP on POI.
Background. Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. Methods. Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. Results. 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. Conclusions. It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.