Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain.
Sharp-wave ripple (SWR) events in the hippocampus replay millisecond-timescale patterns of place cell activity related to the past experience of an animal. Interrupting SWR events leads to learning and memory impairments, but how the specific patterns of place cell spiking seen during SWRs contribute to learning and memory remains unclear. A deeper understanding of this issue will require the ability to manipulate SWR events based on their content. Accurate real-time decoding of SWR replay events requires new algorithms that are able to estimate replay content and the associated uncertainty, along with software and hardware that can execute these algorithms for biological interventions on a millisecond timescale. Here we develop an efficient estimation algorithm to categorize the content of replay from multiunit spiking activity. Specifically, we apply real-time decoding methods to each SWR event and then compute the posterior probability of the replay feature. We illustrate this approach by classifying SWR events from data recorded in the hippocampus of a rat performing a spatial memory task into four categories: whether they represent outbound or inbound trajectories and whether the activity is replayed forward or backward in time. We show that our algorithm can classify the majority of SWR events in a recording epoch within 20 ms of the replay onset with high certainty, which makes the algorithm suitable for a real-time implementation with short latencies to incorporate into content-based feedback experiments.
Understanding the role of rhythmic dynamics in normal and diseased brain function is an important area of research in neural electrophysiology. Identifying and tracking changes in rhythms associated with spike trains present an additional challenge, because standard approaches for continuous-valued neural recordings--such as local field potential, magnetoencephalography, and electroencephalography data--require assumptions that do not typically hold for point process data. Additionally, subtle changes in the history dependent structure of a spike train have been shown to lead to robust changes in rhythmic firing patterns. Here, we propose a point process modeling framework to characterize the rhythmic spiking dynamics in spike trains, test for statistically significant changes to those dynamics, and track the temporal evolution of such changes. We first construct a two-state point process model incorporating spiking history and develop a likelihood ratio test to detect changes in the firing structure. We then apply adaptive state-space filters and smoothers to track these changes through time. We illustrate our approach with a simulation study as well as with experimental data recorded in the subthalamic nucleus of Parkinson's patients performing an arm movement task. Our analyses show that during the arm movement task, neurons underwent a complex pattern of modulation of spiking intensity characterized initially by a release of inhibitory control at 20-40 ms after a spike, followed by a decrease in excitatory influence at 40-60 ms after a spike.
Neuropixels probes present exciting new opportunities for neuroscience, but such large-scale high-density recordings also introduce unprecedented challenges in data analysis. Neuropixels data usually consist of hundreds or thousands of long stretches of sequential spiking activities that evolve non-stationarily over time and are often governed by complex, unknown dynamics. Extracting meaningful information from the Neuropixels recordings is a non-trial task. Here we introduce a general-purpose, graph-based statistical framework that, without imposing any parametric assumptions, detects points in time at which population spiking activity exhibits simultaneous changes as well as changes that only occur in a subset of the neural population, referred to as "change-points". The sequence of change-point events can be interpreted as a footprint of neural population activities, which allows us to relate behavior to simultaneously recorded high-dimensional neural activities across multiple brain regions. We demonstrate the effectiveness of our method with an analysis of Neuropixels recordings during spontaneous behavior of an awake mouse in darkness. We observe that change-point dynamics in some brain regions display biologically interesting patterns that hint at functional pathways, as well as temporally-precise coordination with behavioral dynamics. We hypothesize that neural activities underlying spontaneous behavior, though distributed brainwide, show evidences for network modularity. Moreover, we envision the proposed framework to be a useful off-theshelf analysis tool to the neuroscience community as new electrophysiological recording techniques continue to drive an explosive proliferation in the number and size of data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.