The existing positioning methods for the automatic guided vehicle (AGV) in the port can not achieve high location precision, Therefore, a novel multiple input multiple output (MIMO) antenna radar positioning scheme is proposed in this paper. The positioning problem for AGV is considered, and the joint estimation problem for direction of departure (DoD) and direction of arrival (DoA) is addressed in the multiple-input multiple-output (MIMO) radar system. With the radar detect the transponder and estimate the DoA/DoD, the relative location between the transponder and the AGV can be obtained. The corresponding Cramér–Rao lower bounds (CRLBs) for the target parameters are also derived theoretically. Finally, we compare the positioning accuracy of the traditional global position system (GPS) with the proposed MIMO radar system. Simulation results show that the proposed method can achieve better performance than the traditional GPS.
Abstract:In millimeter wave (mmWave) communications, the feature of relatively large signal absorption and directional transmission render new challenges for wireless communications and signal processing. To further improve the performance of mmWave communications, a novel radar-aided mmWave communication (RAMC) approach is proposed, which can be used in vehicular communications. There are two parts in the proposed RAMC system, including the radar subsystem and the mmWave communication subsystem. In the radar subsystem, the bistatic co-prime multi-input and multi-output (MIMO) arrays are considered. With the radar antenna arrays, both the directions of departure (DoD) and the directions of arrival (DoA) are estimated. Additionally, the compressed sensing (CS)-based method is proposed to obtain the target positions. Using the estimated angle and position information, the channel estimation and feedback link of the mmWave communication subsystem can be eliminated. Moreover, a hybrid beamforming algorithm is proposed in the mmWave communication subsystem, which can overcome the shortage of the analog-only beamforming. Simulation results show that the better estimation performance can be achieved by the bistatic co-prime MIMO arrays than that by the traditional uniform linear arrays (ULA), and with the radar aided, the mmWave communication subsystem can reduce the beam search time, and the cell discovery time is improved significantly.
Based on the classical finite-time stability theory, the problem of finite-time stability (FTS) for time-varying nonlinear systems is investigated in this paper. Several FTS theorems involving global form and local form are presented, and an estimate of the settling-time of such systems is obtained. As an application, we consider the problem of asymptotic stabilization of the Brockett integrator subject to time-varying disturbance. By the switched finite-time controller design methodology, we establish a sufficient condition to guarantee the relative asymptotic stability. For Brockett-like integrator subject to time-varying disturbance, we achieve better convergence performance. Examples and their simulations are given to demonstrate the applicability of the proposed results.
The estimation problem for target velocity is addressed in this in the scenario with a distributed multi-input multi-out (MIMO) radar system. A maximum likelihood (ML)-based estimation method is derived with the knowledge of target position. Then, in the scenario without the knowledge of target position, an iterative method is proposed to estimate the target velocity by updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs) for both scenarios are derived, and the performance degradation of velocity estimation without the position information is also expressed. Simulation results show that the proposed estimation methods can approach the CRLBs, and the velocity estimation performance can be further improved by increasing either the number of radar antennas or the information accuracy of the target position. Furthermore, compared with the existing methods, a better estimation performance can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.