Advanced in unpredictability, ergodicity and sensitivity to initial conditions and parameters, chaotic maps are widely used in modern image encryption algorithms. In this study, the authors propose a novel image block encryption algorithm based on several widely used chaotic maps. In their algorithm, the image blocking method is variable, and both shuffling and substitution algorithms are adopted based on different chaotic maps. Several simulations are provided to evaluate the performances of this encryption scheme. The results demonstrate that the proposed algorithm is with high security level and fast encryption speed, which can be competitive with some other recently proposed image encryption algorithms.
In fault detection and the diagnosis of large industrial systems, whose chemical processes usually exhibit complex, high-dimensional, time-varying and non-Gaussian characteristics, the classification accuracy of traditional methods is low. In this paper, a kernel limit learning machine (KELM) based on an adaptive variation sparrow search algorithm (AVSSA) is proposed. Firstly, the dataset is optimized by removing redundant features using the eXtreme Gradient Boosting (XGBOOST) model. Secondly, a new optimization algorithm, AVSSA, is proposed to automatically adjust the network hyperparameters of KELM to improve the performance of the fault classifier. Finally, the optimized feature sequences are fed into the proposed classifier to obtain the final diagnosis results. The Tennessee Eastman (TE) chemical process is used to verify the effectiveness of the proposed method through multidimensional diagnostic metrics. The results show that our proposed diagnosis method can significantly improve the accuracy of TE process fault diagnosis compared with traditional optimization algorithms. The average diagnosis rate for 21 faults was 91.00%.
Chemical processes usually exhibit complex, high-dimensional and non-Gaussian characteristics, and the diagnosis of faults in chemical processes is particularly important. To address this problem, this paper proposes a novel fault diagnosis method based on the Bernoulli shift coyote optimization algorithm (BCOA) to optimize the kernel extreme learning machine classifier (KELM). Firstly, the random forest treebagger (RFtb) is used to select the features, and the data set is optimized. Secondly, a new optimization algorithm BCOA is proposed to automatically adjust the network hyperparameters of KELM and improve the classifier performance. Finally, the optimized feature sequence is input into the proposed classifier to obtain the final diagnosis results. The Tennessee Eastman (TE) chemical process have been collected and used to verify the effectiveness of the proposed method. A comprehensive comparison and analysis with widely used algorithms is also performed. The results demonstrate that the proposed method outperforms other methods in terms of classification accuracy. The average diagnosis rate of 21 faults is found to be 89.32%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.