The development of the Internet has led to the complexity of network encrypted traffic. Identifying the specific classes of network encryption traffic is an important part of maintaining information security. The traditional traffic classification based on machine learning largely requires expert experience. As an end-to-end model, deep neural networks can minimize human intervention. This paper proposes the CLD-Net model, which can effectively distinguish network encrypted traffic. By segmenting and recombining the packet payload of the raw flow, it can automatically extract the features related to the packet payload, and by changing the expression of the packet interval, it integrates the packet interval information into the model. We use the ability of Convolutional Neural Network (CNN) to distinguish image classes, learn and classify the grayscale images that the raw flow has been preprocessed into, and then use the effectiveness of Long Short-Term Memory (LSTM) network on time series data to further enhance the model’s ability to classify. Finally, through feature reduction, the high-dimensional features learned by the neural network are converted into 8 dimensions to distinguish 8 different classes of network encrypted traffic. In order to verify the effectiveness of the CLD-Net model, we use the ISCX public dataset to conduct experiments. The results show that our proposed model can distinguish whether the unknown network traffic uses Virtual Private Network (VPN) with an accuracy of 98% and can accurately identify the specific traffic (chats, audio, or file) of Facebook and Skype applications with an accuracy of 92.89%.
Known plaintext attack is a common attack method in cryptographic attack. For ciphertext, only known part of the plaintext but unknown key, how to restore the rest of the plaintext is an important part of the known plaintext attack. This paper uses backpropagation neural networks to perform cryptanalysis on AES in an attempt to restore plaintext. The results show that the neural network can restore the entire byte with a probability of more than 40%, restoring more than half of the plaintext bytes with a probability of more than 63% and restoring more than half of the bytes above 89%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.