The purpose of this work was to develop a deep learning (DL) based algorithm, Automatic intensity-modulated radiotherapy (IMRT) Planning via Static Field Fluence Prediction (AIP-SFFP), for automated prostate IMRT planning with real-time planning efficiency. The following method was adopted: AIP-SFFP generates a prostate IMRT plan through predictions of fluence maps using patient anatomy. No inverse planning is required. AIP-SFFP is centered on a custom-built deep learning (DL) neural network for fluence map prediction. Predictions are imported to a commercial treatment-planning system for dose calculation and plan generation. AIP-SFFP was demonstrated for prostate IMRT simultaneously-integrated-boost planning (58.8 Gy/70 Gy to PTV58.8 Gy/PTV70 Gy in 28 fx, PTV = Planning Target Volume). Training data was generated from 106 patients using a knowledge-based planning (KBP) plan generator. Two types of 2D projection images were designed to represent structures’ sizes and locations, and a total of eight projections were utilized to describe targets and organs-at-risk. Projections at nine template beam angles were stacked as inputs for artificial intelligence (AI) training. 14 patients were used as independent tests. The generated test plans were compared with the plans from the KBP training plan generator and clinic practice. The following results were obtained: After normalization (PTV70 Gy V70 Gy = 95%), all 14 AI plans met institutional criteria. The coverage of PTV58.8 Gy in the AI plans was comparable to KBP and clinic plans without statistical significance. The whole body (BODY) D1cc and rectum D0.1cc of AI plans were slightly higher (<1 Gy) compared to KBP and clinic plans; in contrast, the bladder D1cc and other rectum and bladder low doses in the AI plans were slightly improved without clinical relevance. The overall isodose distribution in the AI plans was comparable with KBP plans and clinical plans. AIP-SFFP generated each test plan within 20s including the prediction and the dose calculation. In conclusion, AIP-SFFP was successfully developed for prostate IMRT planning. AIP-SFFP demonstrated good overall plan quality and real-time efficiency. Showing great promise, AIP-SFFP will be investigated for immediate clinical application.
Purpose: To optimize collimator setting to improve dosimetric quality of pancreas volumetric modulated arc therapy plan for stereotactic body radiation therapy. Materials and Methods: Fifty-five volumetric modulated arc therapy cases in stereotactic body radiation therapy of pancreas were retrospectively included in this study with internal review board approval. Different from the routine practice of initializing collimator settings with a template, the proposed algorithm simultaneously optimizes the collimator angles and jaw positions that are customized to the patient geometry. Specifically, this algorithm includes 2 key steps: (1) an iterative optimization algorithm via simulated annealing that generates a set of potential collimator settings from 39 cases with pancreas stereotactic body radiation therapy, and (2) a multi-leaf collimator modulation scoring system that makes the final decision of the optimal collimator settings (collimator angles and jaw positions) based on organs at risk sparing criteria. For validation, the other 16 cases with pancreas stereotactic body radiation therapy were analyzed. Two plans were generated for each validation case, with one plan optimized using the proposed algorithm ( Planopt) and the other plan with the template setting ( Planconv). Each plan was optimized with 2 full arcs and the same set of constraints for the same case. Dosimetric results were analyzed and compared, including target dose coverage, conformity, organs at risk maximum dose, and modulation complexity score. All results were tested by Wilcoxon signed rank tests, and the statistical significance level was set to .05. Results: Both plan groups had comparable target dose coverage and mean doses of all organs at risk. However, organs at risk (stomach, duodenum, large/small bowel) maximum dose sparing ( D0.1 cc and D0.03 cc) was improved in Planopt compared to Planconv. Planopt also showed lower modulation complexity score, which suggests better capability of handling complex shape and sparing organs at risk . Conclusions: The proposed collimator settings optimization algorithm successfully improved dosimetric performance for dual-arc pancreas volumetric modulated arc therapy plans in stereotactic body radiation therapy of pancreas. This algorithm has the capability of immediate clinical application.
Purpose. We have previously reported an artificial intelligence (AI) agent that automatically generates intensity-modulated radiation therapy (IMRT) plans via fluence map prediction, by-passing inverse planning. This AI agent achieved clinically comparable quality for prostate cases, but its performance on head-and-neck patients leaves room for improvement. This study aims to collect insights of the deep-learning-based (DL-based) fluence map prediction model by systematically analyzing its prediction errors. Methods. From the modeling perspective, the DL model’s output is the fluence maps of IMRT plans. However, from the clinical planning perspective, the plan quality evaluation should be based on the clinical dosimetric criteria such as dose-volume histograms. To account for the complex and non-intuitive relationships between fluence map prediction errors and the corresponding dose distribution changes, we propose a novel error analysis approach that systematically examines plan dosimetric changes that are induced by varying amounts of fluence prediction errors. We investigated four decomposition modes of model prediction errors. The two spatial domain decompositions are based on fluence intensity and fluence gradient. The two frequency domain decompositions are based on Fourier-space banded frequency rings and Fourier-space truncated low-frequency disks. The decomposed error was analyzed for its impact on the resulting plans’ dosimetric metrics. The analysis was conducted on 15 test cases spared from the 200 training and 16 validation cases used to train the model. Results. Most planning target volume metrics were significantly correlated with most error decompositions. The Fourier space disk radii had the largest Spearman’s coefficients. The low-frequency region within a disk of ∼20% Fourier space contained most of errors that impact overall plan quality. Conclusions. This study demonstrates the feasibility of using fluence map prediction error analysis to understand the AI agent’s performance. Such insights will help fine-tune the DL models in architecture design and loss function selection.
Objective: Deep learning (DL) models for fluence map prediction (FMP) have great potential to reduce treatment planning time in intensity-modulated radiation therapy (IMRT) by avoiding the lengthy inverse optimization process. This study aims to improve the rigor of input feature design in a DL-FMP model by examining how different designs of input features influence model prediction performance. Approach: This study included 231 head-and-neck (HN) IMRT patients. Three input feature designs were investigated. The first design (D1) assumed that information of all critical structures from all beam angles should be combined to predict fluence maps. The second design (D2) assumed that local anatomical information was sufficient for predicting radiation intensity of a beamlet at a respective beam angle. The third design (D3) assumed the need for both local anatomical information and inter-beam modulation to predict radiation intensity values of the beamlets that intersect at a voxel. For each input design, we tailored the DL model accordingly. All models were trained using the same set of ground truth plans (GT plans). The plans generated by DL models (DL plans) were analyzed using key dose-volume metrics. One-way ANOVA with multiple comparisons correction (Bonferroni method) was performed (significance level=0.05). Main results: For PTV-related metrics, all DL plans had significantly higher maximum dose (p<0.001), conformity index (p<0.001), and heterogeneity index (p<0.001) compared to GT plans, with D2 being the worst performer. Meanwhile, except for cord+5mm (p<0.001), DL plans of all designs resulted in OAR dose metrics that are comparable to those of GT plans. Significance: Local anatomical information contains most of the information that DL models need to predict fluence maps for clinically acceptable OAR sparing. Input features from beam angles are needed to achieve the best PTV coverage. These results provide valuable insights for further improvement of DL-FMP models and DL models in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.