Marine sensors are highly vulnerable to illegal access network attacks. Moreover, the nation’s meteorological and hydrological information is at ever-increasing risk, which calls for a prompt and in depth analysis of the network behavior and traffic to detect network attacks. Network attacks are becoming more diverse, with a large number of rare and even unknown types of attacks appearing. This results in traditional-machine-learning (ML)-based network intrusion detection (NID) methods performing weakly due to the lack of training samples. This paper proposes an NID method combining the log-cosh conditional variational autoencoder (LCVAE) with convolutional the bi-directional long short-term memory neural network (LCVAE-CBiLSTM) based on deep learning (DL). It can generate virtual samples with specific labels and extract more significant attack features from the monitored traffic data. A reconstructed loss term based on the log-cosh model is introduced into the conditional autoencoder. From it, the virtual samples are able to inherit the discrete attack data and enhance the potential features of the imbalance attack type. Then, a hybrid feature extraction model is proposed by combining the CNN and BiLSTM to tackle the attack’s spatial and temporal features. The following experiments evaluated the proposed method’s performance on the NSL-KDD dataset. The results demonstrated that the LCVAE-CBiLSTM obtained better results than state-of-the-art works, where the accuracy, F1-score, recall, and FAR were 87.30%, 87.89%, 80.89%, and 4.36%. The LCVAE-CBiLSTM effectively improves the detection rate of a few classes of samples and enhances the NID performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.