We show directly by loss-of-function genetics that PAT-6/actopaxin plays essential roles during the maturation of integrin-mediated muscle attachments in vivo.
Janus nano/micromotors have been developed into various sizes, shapes, and functions for a blaze of applications especially in biomedical and environmental fields. Here, a fabrication method of Janus micromotors is reported by capping hydrogel microspheres with functional nanoparticles (NPs). Microspheres are prepared in droplet microfluidics relying on hydrogel polymerization to obtain spheres with diameters from 20 to 500 µm. By solidifying a hydrogel layer onto microspheres, functional NPs of MnO2 (catalyst of H2O2), TiO2 (photocatalyst), and Fe3O4 (magnetic guidance) are adhered onto microspheres resulting in Janus micromotors revealing different functionalities. Dynamics of Janus micromotors (diameter around 250 µm) are explored by analyzing their trajectories in terms of mean squared displacement when immersed in H2O2 solutions of different concentrations, illuminated by light and guided in an external magnetic field. TiO2 Janus micromotors perform well for water purification tasks as is exemplarily demonstrated with a degradation of Methylene Blue dye in water. The proposed fabrication method is versatile and enables to achieve adjustable coverage of a microsphere with NPs as well as to realize multifunctional Janus micromotors by adhering different NPs (e.g., MnO2 and Fe3O4) on a sphere. This method provides an attractive way to fabricate multifunctional Janus micromotors in a cost‐effective manner for environmental applications.
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.