The link between Zika virus (ZIKV) infection and microcephaly has raised urgent global alarm. The historical African ZIKV MR766 was recently shown to infect cultured human neural precursor cells (NPCs), but unlike the contemporary ZIKV strains, it is not believed to cause microcephaly. Here we investigated whether the Asian ZIKV strain SZ01 could infect NPCs in vivo and affect brain development. We found that SZ01 replicates efficiently in embryonic mouse brain by directly targeting different neuronal linages. ZIKV infection leads to cell-cycle arrest, apoptosis, and inhibition of NPC differentiation, resulting in cortical thinning and microcephaly. Global gene expression analysis of infected brains reveals upregulation of candidate flavirus entry receptors and dysregulation of genes associated with immune response, apoptosis, and microcephaly. Our model provides evidence for a direct link between Zika virus infection and microcephaly, with potential for further exploration of the underlying mechanisms and management of ZIKV-related pathological effects during brain development.
When this paper was originally published, the accession number for the RNA-seq dataset included in the study was unfortunately omitted. The dataset has now been submitted to the Genome Sequence Archive of the Beijing Institute of Genomics Data Center under the accession number PRJCA000267. The online version of the paper has also been modified to include an Accession Numbers section with this information.
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two-dimensionally in the first few molecular layers near the dielectric interface.Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered mono-to tetra-layer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to band-like in subsequent layers.Such abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ~3nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals. 3Organic field-effect transistors (OFETs) offer unique advantages of low cost, lightweight and flexibility and are widely used in electronics and display industry.While the mobility of bulk organic semiconductors has increased dramatically [1][2][3], an outstanding issue is to directly examine the structure-property relationship at the semiconductor-dielectric interface [4], where charge transport actually occurs [5][6][7].Ultrathin organic semiconductors down to few-nanometre thickness are often dominated by traps and disorders and far away from intrinsic transport regime [8][9][10].Another challenge in organic electronics is the development of layer-by-layer epitaxy with the precision similar to molecular beam epitaxy in their inorganic counterparts [11]. These challenges may be alleviated if molecular crystals are processed into large-area, highly crystalline monolayers. Such 2D form factor will also bring about new applications such as nanoporous membranes and insulating dielectrics [12,13].Several recent breakthroughs in various types of 2D organic materials such as polymers [14,15], oligomers [16] and covalent organic frameworks [17] have already shown great promises along this direction. However, one of the most fundamental questions regarding the nature of charge transport at the 2D limit has not been addressed. In this work, we study the benchmark molecule pentacene epitaxially crystallized on BN substrate because of its high mobility and simple structure to model. The highly clean system allows us to provide the first definitive scenario of how molecular packing and charge transport are modulated near the interface, without being dominated by extrinsic factors. Our results suggest the possibility of band-like transport...
We have collated and reviewed published records of the genera Panicum and Setaria (Poaceae), including the domesticated millets Panicum miliaceum L. (broomcorn millet) and Setaria italica (L.) P. Beauv. (foxtail millet) in pre-5000 cal B.C. sites across the Old World. Details of these sites, which span China, centraleastern Europe including the Caucasus, Iran, Syria and Egypt, are presented with associated calibrated radiocarbon dates. Forty-one sites have records of Panicum (P. miliaceum, P. cf. miliaceum, Panicum sp., Panicum type, P. capillare (?) and P. turgidum) and 33 of Setaria (S. italica, S. viridis, S. viridis/verticillata, Setaria sp., Setaria type). We identify problems of taphonomy, identification criteria and reporting, and inference of domesticated/wild and crop/weed status of finds. Both broomcorn and foxtail millet occur in northern China prior to 5000 cal B.C.; P. miliaceum occurs contemporaneously in Europe, but its significance is unclear. Further work is needed to resolve the above issues before the status of these taxa in this period can be fully evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.