Throughout the COVID-19 pandemic, hundreds of millions of people worldwide have become new users of respiratory protective devices. Facemasks and KN95 respirators utilizing an ear loop straps system (ELSS) have recently become popular among occupational and non-occupational populations. Part of this popularity is due to the ease of wearability as compared with traditional devices utilizing two headbands, one worn over the head and the other behind the neck—a universal strap system used in NIOSH-certified N95 filtering facepiece respirators (FFRs). Some users convert the two-strap configuration to an adjustable ELSS. The first objective of this pilot study was to quantitatively characterize how such a conversion impacts the respirator fit. Additionally, a novel faceseal (NFS) technology, which has been previously demonstrated to enhance the fit of N95 FFRs, was deployed to modify the ELSS-converted N95 FFRs. The second objective of this study was to quantify the fit improvement that results from adding the NFS to the ELSS. The study was conducted by performing the Occupational Safety and Health Administration (OSHA)-approved quantitative fit testing (QNFT) on 16 human subjects featuring different facial shapes and dimensions. Three models of cup-shaped N95 FFRs were tested in three versions: the standard version with manufacturer’s strap system, the ELSS-converted, and the ELSS-converted version modified by adding the NFS. QNFT demonstrated that the fit of an N95 FFR featuring the traditional/standard headbands strap system is negatively impacted when this system is converted to an ELSS. The fit of an ELSS-converted respirator can be significantly improved by the addition of the NFS. We found that the FFR model and the strap system version are significant factors affecting the QNFT-determined respirator fit factor (FF), as well as the OSHA QNFT pass rate (FF ≥100). The findings suggest that the current NFS, if further improved, has a potential for developing a ‘universally fitting’ ELSS-equipped N95 FFR that can be used by the general public, the vast majority of whom do not have access to OSHA fit requirements.
The COVID-19 pandemic introduced considerable challenges for respiratory protection of different population groups. Disposable medical masks and NIOSH-approved N95 filtering facepiece respirators (FFRs) are typically their only defense against the virus. At the same time, continuous wearing of these devices, especially some N95 FFR models cause damage to the facial skin, such as skin irritation, swelling, and scaling. Skin protectants are becoming increasingly popular and effective in providing a protective barrier for the skin that reduces direct contact between a wearer's face and respirator. Recent pilot studies involving human subjects have examined the effect of skin protectants on the performance of respirators/masks through fit testing, but their findings are heavily impacted by between-subject variability. This investigation deployed a standardized protocol that utilized the NIOSH advanced static manikin headform connected to a Breathing Recording and Simulation System (BRSS), producing a predetermined breathing pattern. The effect of skin protectants on the total inward leakage (TIL) was evaluated for three N95 FFR models, five different skin protectants, and two breathing flow rates. The aerosol particle concentrations inside and outside the respirator were measured with NaCl serving as the challenge aerosol. The TIL was shown to be significantly affected by the interaction of the skin protectant type, breathing flow rate and FFR models. The data suggest that different skin protectants may influence the performance of disposable N95 FFRs in different ways -by either increasing or decreasing the TIL value relative to one with no skin protectants applied. No negative effects on the TIL was observed for either tape-or gel/cream-type protectants when testing with 3M 8210 or 3M 1870+ FFRs; however, the use of skin protectants of either group with the AOSafety 1050 FFR may compromise its performance as quantified by the TIL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.