The explosive growth in fake news and its erosion to democracy, justice, and public trust has increased the demand for fake news detection and intervention. This survey reviews and evaluates methods that can detect fake news from four perspectives: the false
knowledge
it carries, its writing
style
, its
propagation
patterns, and the credibility of its
source
. The survey also highlights some potential research tasks based on the review. In particular, we identify and detail related fundamental theories across various disciplines to encourage interdisciplinary research on fake news. It is our hope that this survey can facilitate collaborative efforts among experts in computer and information sciences, social sciences, political science, and journalism to research fake news, where such efforts can lead to fake news detection that is not only efficient but, more importantly, explainable.
Effective detection of fake news has recently attracted significant attention. Current studies have made significant contributions to predicting fake news with less focus on exploiting the relationship (similarity) between the textual and visual information in news articles. Attaching importance to such similarity helps identify fake news stories that, for example, attempt to use irrelevant images to attract readers' attention. In this work, we propose a Similarity-Aware FakE news detection method (SAFE) which investigates multi-modal (textual and visual) information of news articles. First, neural networks are adopted to separately extract textual and visual features for news representation. We further investigate the relationship between the extracted features across modalities. Such representations of news textual and visual information along with their relationship are jointly learned and used to predict fake news. The proposed method facilitates recognizing the falsity of news articles based on their text, images, or their "mismatches." We conduct extensive experiments on large-scale real-world data, which demonstrate the effectiveness of the proposed method.
Consuming news from social media is becoming increasingly popular. Social media appeals to users due to its fast dissemination of information, low cost, and easy access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.