Ferroptosis is an intracellular iron-dependent form of cell death that is distinct from apoptosis, necrosis, and autophagy. Extensive studies suggest that ferroptosis plays a pivotal role in tumor suppression, thus providing new opportunities for cancer therapy. The development of resistance to cancer therapy remains a major challenge. A number of preclinical and clinical studies have focused on overcoming drug resistance. Intriguingly, ferroptosis has been correlated with cancer therapy resistance, and inducing ferroptosis has been demonstrated to reverse drug resistance. Herein, we provide a detailed description of the mechanisms of ferroptosis and the therapeutic role of regulating ferroptosis in reversing the resistance of cancer to common therapies, such as chemotherapy, targeted therapy and immunotherapy. We discuss the prospect and challenge of regulating ferroptosis as a therapeutic strategy for reversing cancer therapy resistance and expect that our review could provide some references for further studies.
Gefitinib, a tyrosine kinase inhibitor of epidermal growth factor receptor, has been used as the first choice of treatment for advanced non-small-cell lung cancer. However, during the course of treatment, cancer cells often develop resistance to gefitinib without fully understood mechanisms. In this study, we aimed to elucidate an important role of long intergenic non-coding RNA 00665 in developing resistance to gefitinib in non-small-cell lung cancer. We showed that long intergenic non-coding RNA 00665 expression was significantly upregulated in lung cancer tissues and cells with acquired gefitinib resistance. Long intergenic non-coding RNA 00665 knockdown restored gefitinib sensitivity both in vitro and in vivo by suppressing cell proliferation and inducing apoptosis. Moreover, knockdown of long intergenic non-coding RNA 00665 markedly reduced activation of EGFR and its downstream event protein kinase B (AKT). Moreover, LINC00665 could interact with EZH2 and regulate the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Thus, our study suggests that long intergenic non-coding RNA 00665 is important for non-small-cell lung cancer to develop drug resistance and might be a potential biomarker for drug resistance and a therapeutic target for non-small-cell lung cancer.
Background:In recent years, long non-coding RNAs (lncRNAs) have been shown to be a novel class of regulators of cancer biological processes. Although lncRNAs are dysregulated in numerous cancer types, limited data are available on the expression profiles and potential functions of lncRNAs in lung adenocarcinoma (LUAD). This study evaluated the expression and biological roles of lncRNA SOX21 antisense RNA 1 (SOX21-AS1) in LUAD. Methods: Quantitative reverse transcription PCR (qRT-PCR) was performed to detect the expression levels of SOX21-AS1 in 68 pairs of LUAD tissues and corresponding non-tumor tissues. The effect of SOX21-AS1 on proliferation was evaluated by MTT, colony formation, EdU assays, flow-cytometric analysis and in vivo tumor formation assays. Real-time PCR, western-blot and immunohistochemistry were used to evaluate the mRNA and protein expression of p57. Results: Higher expression levels of SOX21-AS1 positively correlated with tumor size and advanced tumor-node-metastasis (TNM) stage. Multivariate analyses indicated that SOX21-AS1 expression could serve as an independent prognostic factor for overall survival of LUAD. Furthermore, knockdown of SOX21-AS1 significantly inhibited LUAD cell proliferation both in vitro and in vivo and induced cell cycle phase arrest and cell apoptosis. Importantly, through qRT-PCR and western blot analysis, we found that inhibition of SOX21-AS1 remarkably induced p57 expression. Conclusions: Collectively, our study demonstrates that SOX21-AS1 is involved in the development and progression of LUAD and that SOX21-AS1 may be a potential diagnostic factor as well as a target for new therapies for patients with LUAD.X. Lu, C. Huang and X. He contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.