Considering the drawbacks of traditional wavelet neural network, such as low convergence speed and high sensitivity to initial parameters, an ant colony optimization-(ACO-) initialized wavelet neural network is proposed in this paper for vibration fault diagnosis of a hydroturbine generating unit. In this method, parameters of the wavelet neural network are initialized by the ACO algorithm, and then the wavelet neural network is trained by the gradient descent algorithm. Amplitudes of the frequency components of the hydroturbine generating unit vibration signals are used as feature vectors for wavelet neural network training to realize mapping relationship from vibration features to fault types. A real vibration fault diagnosis case result of a hydroturbine generating unit shows that the proposed method has faster convergence speed and stronger generalization ability than the traditional wavelet neural network and ACO wavelet neural network. Thus it can provide an effective solution for online vibration fault diagnosis of a hydroturbine generating unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.