Polyurethane (PU) is an indispensable part of people’s lives. With the development of polyurethane, the disposal of polyurethane waste has become a significant issue around the world. Conventional degradation catalysts have poor dispersion and low degradation efficiency when used in the process of solid degradation into liquid. Therefore, this paper innovatively adopts self-made core–shell nanoscale titanium catalysis, traditional alkali metal catalyst (KOH), and polyol to carry out the glycolysis of waste polyurethane (PU) pipeline foam. The homogenized nanoscale titanium catalyst coated with alcohol gel has an obvious core–shell structure. The alcohol gel not only protects the catalyst but also dissolves with the alcoholysis agent in the process of glycolysis and disperses more evenly into the alcoholysis agent to avoid the phenomenon of nanocatalyst agglomeration, so as to facilitate catalytic cracking without reducing catalyst activity. In this study, investigated and compared the production of renewable polyurethane foam via a one-step method based on use of a homogeneous core–shell nanostructured titanium catalyst vs. a traditional alkaline catalyst in terms of the properties of regenerated polyether polyols as well as of the foams produced from these polyols. The physicochemical properties of regenerated polyether polyols that were analyzed included viscosity, hydroxyl value, and average molecular weight. The regenerated polyurethane foams were characterized based on water absorption, TG, SEM, and thermal conductivity analyses. The results show that, when the addition of homogeneous titanium catalyst was T2 0.050 wt.%, the viscosity of regenerated polyether polyols was the lowest, at 5356.7 mPa·s, which was reduced by 9.97% compared with those obtained using the alkali metal catalyst (KOH). When the amount of titanium catalyst was T3 0.075 wt.%, the hard foam made of regenerated polyurethane prepared by the catalyst showed the best properties, with a compressive strength of 0.168 MPa, which is 4.76% higher than that of the foam prepared using KOH catalyst.
In this paper, four different kinds of diols were used for the alcoholysis of waste thermoplastic polyurethane elastomers. The recycled polyether polyols were used to prepare regenerated thermosetting polyurethane rigid foam through one-step foaming. We used four different kinds of alcoholysis agents, according to different proportions of the complex, and we combined them with an alkali metal catalyst (KOH) to trigger the catalytic cleavage of the carbamate bonds in the waste polyurethane elastomers. The effects of the different types and different chain lengths of the alcoholysis agents on the degradation of the waste polyurethane elastomers and the preparation of regenerated polyurethane rigid foam were studied. Based on the viscosity, GPC, FT-IR, foaming time and compression strength, water absorption, TG, apparent density, and thermal conductivity of the recycled polyurethane foam, eight groups of optimal components were selected and discussed. The results showed that the viscosity of the recovered biodegradable materials was between 485 and 1200 mPa·s. The hard foam of the regenerated polyurethane was prepared using biodegradable materials instead of commercially available polyether polyols, and its compressive strength was between 0.131 and 0.176 MPa. The water absorption rate ranged from 0.7265 to 1.9923%. The apparent density of the foam was between 0.0303 and 0.0403 kg/m3. The thermal conductivity ranged from 0.0151 to 0.0202 W/(m·K). A large number of experimental results showed that the degradation of the waste polyurethane elastomers by the alcoholysis agents was successful. The thermoplastic polyurethane elastomers can not only be reconstructed, but they can also be degraded by alcoholysis to produce regenerated polyurethane rigid foam.
Rigid polyurethane (PU) foam waste was chemically degraded by the two-component alcoholysis agent of diethylene glycol and ethanolamine and graphine oxide (GO), and PU/GO nanocomposites were obtained by one-step foaming. Rigid PU foam was chemically degraded by adding different proportions of two-component alcoholysis agent and GO. Research on the introduction of GO to degrade PU matrices, using different proportions of the alcoholysis agent degradation law of PU oligomer polyols for regeneration, was conducted through the viscosity and hydroxyl value of recycled polyol determination, the infrared spectrum of foam samples, X-ray photoelectron spectroscopy, density, water absorption, thermogravimetric and polarizing microscope analysis. The results showed that the compressive strength of PU/GO nanocomposites increased to 0.2754MPa by 9.6% when the amount of graphene was 0.5% and the thermal conductivity 0.0120W/m·K, which is 4.8% reduction. The Kissinger equation was used to calculate the activation energy of the regenerated PU pyrolysis reaction. The results showed that the activation energy of the regenerated PU pyrolysis reaction was improved by adding the graphene
In this paper, the high-efficiency degradation and alcoholysis recovery of waste polyurethane foam were realized using a combination of a high-efficiency alkali metal catalyst (CsOH) and two-component mixed alcoholysis agents (glycerol and butanediol) in different proportions, using recycled polyether polyol and one-step foaming to prepare regenerated thermosetting polyurethane hard foam. The foaming agent and catalyst were adjusted experimentally to prepare regenerated polyurethane foam, and a series of tests were conducted on the viscosity, GPC, hydroxyl value, infrared spectrum, foaming time, apparent density, compressive strength, and other properties of the degradation products of the regenerated thermosetting polyurethane rigid foam. The resulting data were analyzed, and the following conclusions were drawn: The optimal conditions of alcoholysis were obtained when the mass ratio of glycerol to butanediol was 3:2, the amount of cesium hydroxide was 0.08%, the reaction temperature was 170 °C, and the reaction time was 2.5 h. Regenerated polyurethane foam with an apparent density of 34.1 kg/m3 and a compressive strength of 0.301 MPa was prepared under these conditions. It had good thermal stability, complete sample pores, and a strong skeleton. At this time, these are the best reaction conditions for the alcoholysis of waste polyurethane foam, and the regenerated polyurethane foam meets various national standards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.