Lightweight or mobile neural networks used for real‐time computer vision tasks contain fewer parameters than normal networks, which lead to a constrained performance. Herein, a novel activation function named as Tanh Exponential Activation Function (TanhExp) is proposed which can improve the performance for these networks on image classification task significantly. The definition of TanhExp is f(x) = x tanh(ex). The simplicity, efficiency, and robustness of TanhExp on various datasets and network models is demonstrated and TanhExp outperforms its counterparts in both convergence speed and accuracy. Its behaviour also remains stable even with noise added and dataset altered. It is shown that without increasing the size of the network, the capacity of lightweight neural networks can be enhanced by TanhExp with only a few training epochs and no extra parameters added.
The domain gap severely limits the transferability and scalability of object detectors trained in a specific domain when applied to a novel one. Most existing works bridge the domain gap by minimizing the domain discrepancy in the category space and aligning category-agnostic global features. Though great success, these methods model domain discrepancy with prototypes within a batch, yielding a biased estimation of domain-level distribution. Besides, the category-agnostic alignment leads to the disagreement of class-specific distributions in the two domains, further causing inevitable classification errors. To overcome these two challenges, we propose a novel Semantic Conditioned AdaptatioN (SCAN) framework such that well-modeled unbiased semantics can support semantic conditioned adaptation for precise domain adaptive object detection. Specifically, class-specific semantics crossing different images in the source domain are graphically aggregated as the input to learn an unbiased semantic paradigm incrementally. The paradigm is then sent to a lightweight manifestation module to obtain conditional kernels to serve as the role of extracting semantics from the target domain for better adaptation. Subsequently, conditional kernels are integrated into global alignment to support the class-specific adaptation in a well-designed Conditional Kernel guided Alignment (CKA) module. Meanwhile, rich knowledge of the unbiased paradigm is transferred to the target domain with a novel Graph-based Semantic Transfer (GST) mechanism, yielding the adaptation in the category-based feature space. Comprehensive experiments conducted on three adaptation benchmarks demonstrate that SCAN outperforms existing works by a large margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.