Macrocycles, compounds containing a ring of 12 or more atoms, find use in human medicine, fragrances, and biological ion sensing. The efficient preparation of macrocycles is a fundamental challenge in synthetic organic chemistry because the high entropic cost of large-ring closure allows undesired intermolecular reactions to compete. Here, we present a bioinspired strategy for macrocycle formation through carbon–carbon bond formation. The process relies on a catalytic oligomer containing α- and β-amino acid residues to template the ring-closing process. The α/β-peptide foldamer adopts a helical conformation that displays a catalytic primary amine–secondary amine diad in a specific three-dimensional arrangement. This catalyst promotes aldol reactions that form rings containing 14 to 22 atoms. Utility is demonstrated in the synthesis of the natural product robustol.
This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Use of a tunable molecular scaffold
to align a reactive diad for
bifunctional catalysis can reveal relationships between functional
group identity and reactivity that might otherwise be impossible to
identify. Here we use an α/β-peptide helix to show that
an aligned pair of primary amine groups is uniquely competent to catalyze
crossed aldol condensations with an aryl aldehyde as the electrophile.
Geometrically similar diads in which one amine group is secondary,
or both are secondary, are good catalysts for other types of aldol
condensations but not those involving an aryl aldehyde. Catalytic
efficacy requires β-amino acid residues that are preorganized
for helix formation via cyclic constraint. Conventional peptides (exclusively
α-amino acid residues) that display the primary amine diad are
poor catalysts, which highlights the critical role of the foldamer
scaffold.
Assemblies of racemic β‐sheet‐forming peptides have attracted attention for biomedical applications because racemic forms of peptides can self‐associate more avidly than do single enantiomers. In 1953, Pauling and Corey proposed “rippled β‐sheet” modes of H‐bond‐mediated interstrand assembly for alternating L‐ and D‐peptide strands; this structural hypothesis was complementary to their proposal of “pleated β‐sheet” assembly for L‐peptides. Although no high‐resolution structure has been reported for a rippled β‐sheet, there is strong evidence for the occurrence of rippled β‐sheets in some racemic peptide assemblies. Here we compare propensities of peptide diastereomers in aqueous solution to form a minimum increment of β‐sheet in which two antiparallel strands associate. β‐Hairpin folding is observed for homochiral peptides with aligned nonpolar side chains, but no β‐hairpin population can be detected for diastereomers in which one strand contains L residues and the other contains D residues. These observations suggest that rippled β‐sheet assemblies are stabilized by interactions between β‐sheet layers rather than interactions within these layers.
Peptide catalysts based on TrpZip scaffolds for the hydrolysis of para-nitrophenylacetate in aqueous media were found to have higher catalytic activity in sequences without β-hairpin character.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.