is synthesized by trapping rhodamine B (RhB) into the channels of [Me 2 NH 2 ][Tb 3 (dcpcpt) 3 (HCOO)]•DMF•15H 2 O (Tb-dcpcpt, DMF = N,N'-dimethylformamide) via an ionexchange process. The photophysical property of RhB@Tbdcpcpt exhibits stable columinescence of RhB and Tb 3+ ions in the whole excitation range of 300−390 nm, realizing an excitation-wavelength-independent yellow light emission. Powder X-ray diffraction and photoluminescence analysis illustrate the outstanding stabilities of RhB@Tb-dcpcpt on structural and photophysical properties in water medium. Subsequently, a bifunctional sensing process toward antibiotics is designed in terms of luminescent intensity and color. As a result, RhB@Tb-dcpcpt could realize sensitive and selective detection toward nitrofuran antibiotics (nitrofurazone and nitrofurantoin) via luminescent quenching process and toward quinolone antibiotics (ciprofloxacin and norfloxacin) via luminescent color-changing process. Systematic analysis on the sensing mechanism reveals that photoinduced electron transfer and inner filter effect contribute to the realization of the sensing process.
Accumulating evidence from studies in humans and animal models has elucidated that gut microbiota, acting as a complex ecosystem, contributes critically to colorectal cancer (CRC). The potential mechanisms often reported emphasize the vital role of carcinogenic activities of specific pathogens, but in fact, a series of metabolites produced from exogenous dietary substrates or endogenous host compounds occupy a decisive position similarly. Detrimental gut microbiota-derived metabolites such as trimethylamine-N-oxide, secondary bile acids, hydrogen sulfide and N-nitroso compounds could reconstruct the ecological composition and metabolic activity of intestinal microorganisms and formulate a microenvironment that opens susceptibility to carcinogenic stimuli. They are implicated in the occurrence, progression and metastasis of CRC through different mechanisms, including inducing inflammation and DNA damage, activating tumorigenic signaling pathways and regulating tumor immunity. In this review, we mainly summarized the intimate relationship between detrimental gut microbiota-derived metabolites and CRC, and updated the current knowledge about detrimental metabolites in CRC pathogenesis. Then, multiple interventions targeting these metabolites for CRC management were critically reviewed, including diet modulation, probiotics/prebiotics, fecal microbiota transplantation, as well as more precise measures such as engineered bacteria, phage therapy and chemopreventive drugs. A better understanding of the interplay between detrimental microbial metabolites and CRC would hold great promise against CRC.
This paper reports the highly efficient pyroelectric nanomaterial-based catalytic degradation of waste dye under rapid temperature oscillation, which was achieved by periodical solar irradiation on a porous pyroelectric membrane that was floating at the liquid/air interface. Such a membrane consists of the light-to-heat conversion carbon black film as the top layer and the porous poly(vinylidene difluoride) (PVDF) film embedded with pyroelectric barium titanate (BaTiO) nanoparticles (BTO NPs) as the bottom layer. By using an optical chopper, solar light can be modulated to periodically irradiate on the floating membrane. Because of the photothermal effect and low thermal conductivity of the PVDF polymer, the generated heat is localized at the surface of the membrane and substantially increases the surface temperature within a short period of time. When the solar light is blocked by the chopper, interfacial evaporation through the porous membrane along with convective air cooling and radiative cooling leads to heat dissipation, and then the temperature of the membrane is rapidly decreased. Such an efficient thermal cycle results in a substantial rate of temperature change of the membrane, which enhances its pyroelectric capability and subsequent pyro-catalysis. In contrast, the efficiency of pyro-catalysis through the dispersed BTO NP solution is about 4 times lower than that of the BTO composite membrane. With the large heat capacity of the aqueous solution and inevitable thermal loss because of bulk heating, the rate of temperature change of the BTO NP solution is much smaller than that of the BTO composite membrane and thus results in a relatively small pyro-catalytic capability. Furthermore, the reusability and transferability of this newly developed composite membrane make it amenable to practical use in treating contaminated water. The findings in our report not only offer a new design strategy for efficient solar-enabled pyro-catalysis but also pave a new way to rationally harvest solar-thermal energy in nature for various applications that involve pyroelectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.