In industry, sensor-based monitoring of equipment or environment has become a necessity. Instead of using a single sensor, multi-sensor system is used to fully detect abnormalities in complex scenarios. Recently, physical models, signal processing technology, and various machine learning models have improved the performance. However, these methods either do not consider the potential correlation between features or do not take advantage of the sequential changes of correlation while constructing an anomaly detection model. This paper firstly analyzes the correlation characteristic of a multi-sensor system, which shows a lot of clues to the anomaly/fault propagation. Then, a multi-sensor anomaly detection method, which finds and uses the correlation between features contained in the multidimensional time-series data, is proposed. The method converts the multidimensional time-series data into temporal correlation graphs according to time window. By transforming time-series data into graph structure, the task of anomaly detection is considered as a graph classification problem. Moreover, based on the stability and dynamics of the correlation between features, a structure-sensitive graph neural network is used to establish the anomaly detection model, which is used to discover anomalies from multi-sensor system. Experiments on three real-world industrial multi-sensor systems with anomalies indicate that the method obtained better performance than baseline methods, with the mean value of F1 score reaching more than 0.90 and the mean value of AUC score reaching more than 0.95. That is, the method can effectively detect anomalies of multidimensional time series.
SUMMARYIn this paper, we propose an inconsistency resolution method based on a new concept, insecure backtracking role mapping. By analyzing the role graph, we prove that the root cause of security inconsistency in distributed interoperation is the existence of insecure backtracking role mapping. We propose a novel and efficient algorithm to detect the inconsistency via finding all of the insecure backtracking role mappings. Our detection algorithm will not only report the existence of inconsistency, but also generate the inconsistency information for the resolution. We reduce the inconsistency resolution problem to the known Minimum-Cut problem, and based on the results generated by our detection algorithm we propose an inconsistency resolution algorithm which could guarantee the security of distributed interoperation. We demonstrate the effectiveness of our approach through simulated tests and a case study. key words: role based access control, security inconsistency, role mapping, inconsistency detection, inconsistency resolution
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.