The complexity of linear mixed-effects (LME) models means that traditional diag-nostics are rendered less effective. This is due to a breakdown of asymptotic results, boundary issues, and visible patterns in residual plots that are introduced by the model fitting process. Some of these issues are well known and adjustments have been proposed. Working with LME models typically requires that the analyst keeps track of all the special circumstances that may arise. In this paper we illustrate a simpler but generally applicable approach to diagnosing LME models. We explain how to use new visual inference methods for these purposes. The approach provides a unified framework for diagnosing LME fits and for model selection. We illustrate the use of this approach on several commonly available data sets. A large-scale Amazon Turk study was used to validate the methods. R code is provided for the analyses.
With the expansion of data, increasing imbalanced data has emerged. When the imbalance ratio of data is high, most existing imbalanced learning methods decline in classification performance. To address this problem, a few highly imbalanced learning methods have been presented. However, most of them are still sensitive to the high imbalance ratio. This work aims to provide an effective solution for the highly imbalanced data classification problem. We conduct highly imbalanced learning from the perspective of feature learning. We partition the majority class into multiple blocks with each being balanced to the minority class and combine each block with the minority class to construct a balanced sample set. Multiset feature learning (MFL) is performed on these sets to learn discriminant features. We thus propose an uncorrelated cost-sensitive multiset learning (UCML) approach. UCML provides a multiple sets construction strategy, incorporates the cost-sensitive factor into MFL, and designs a weighted uncorrelated constraint to remove the correlation among multiset features. Experiments on five highly imbalanced datasets indicate that: UCML outperforms state-of-the-art imbalanced learning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.