Film is widely used in optoelectronic and semiconductor industries. The accurate measurement of the film thickness and refractive index, as well as the surface topography of the top and bottom surfaces are necessary to ensure its processing quality. Multiple measurement methods were developed; however, they are limited by the requirements of a known dispersion model and initial values of thickness and refractive index. Further, their systems are rarely compatible with surface topography measurement methods. We propose a constrained nonlinear fitting method to simultaneously measure the thickness and refractive index of film in a simple white-light spectral interferometer. The nonlinear phase extracted by the spectral phase-shifting is fitted with the theoretical nonlinear phase obtained by multiple reflection model. The constraints of nonlinear fitting are obtained by the interferometric signal of vertical scanning, reconstructed by the integration of the white-light spectral signal to avoid local minima. The proposed method does not require a priori knowledge of the dispersion model and initial values of thickness and refractive index, and its system is compatible with the vertical scanning interferometry (VSI) method to reconstruct the surface topography of the top and bottom surfaces of film. Three SiO2 films with different thicknesses are measured, and the results show that the measured refractive index is within the theoretical value range of wavelength bandwidth and the measured thicknesses are closely aligned with the values provided by the commercial instrument. The measurement repeatability of refractive index reaches 10−3. Measurements on a polymer film demonstrate that this method is feasible for measuring the film without a priori information.
Perfect state transfer of the bus topological system enables the sharing of information or excitation between nodes. Herein we report groundbreaking research on the transfer of the graphene-bridged bus topological network structure to an electromagnetic metamaterial setting, named “bus topological network metamaterials (TNMMs).” Correspondingly, the electromagnetic response imprints onto the topological excitation. We find that the bus-TNMMs display a perfect modulation of the terahertz response. The blue-shift of resonance frequency could increase to as large as 1075 GHz. The modulation sensitivity of the bus-TNMMs reaches 1027 GHz/Fermi level unit (FLU). Meanwhile, with the enhancement of modulation, the line shape of the reflection keeps underformed. Parabola, ExpDec1, and Asymptotic models are used to estimate the modulation of the resonance frequency. Besides, the bus-TNMMs system provides a fascinating platform for dynamic cloaking. By governing the Fermi level of graphene, the bus-TNMMs can decide whether it is cloaking or not in a bandwidth of 500 GHz. Also, the bus-TNMMs exhibit the immense potential for dynamically detecting the vibrational fingerprinting of an analyte. These results give a far-reaching outlook for steering dynamically the terahertz response with the bus-TNMMs. Therefore, we believe that the discovery of bus-TNMMs will revolutionize our understanding of the modulation of the electromagnetic response.
A new technique is proposed for measuring film structure based on the combination of time- and frequency-domain fitting and white-light scanning interferometry. The approach requires only single scanning and employs a fitting method to obtain the film thickness and the upper surface height in the frequency and time domains, respectively. The cross-correlation function is applied to obtain the initial value of the upper surface height, thereby making the fitting process more accurate. Standard films (SiO2) with different thicknesses were measured to verify the accuracy and reliability of the proposed method, and the three-dimensional topographies of the upper and lower surfaces of the films were reconstructed.
Optical interferometers are widely used in the measurement of micro- and nanoscale surface topography. However, their accuracy and resolution can be seriously affected by environmental noise. We present a multi-mode interferometric measurement system based on wavelength modulation and active vibration resistance. This supports two measurement modes: wavelength-scanning interferometry, which is suitable for structured surfaces, and wavelength-tuning interferometry, which is suitable for smooth continuous surfaces. In addition, the system can measure the optical path difference of the current position in real time, which is convenient for making system adjustments and improving the measurement accuracy. The proposed system was used to measure 1.806 µm and 43.2 nm step height standards. Under different degrees of vibration, the measured heights in the two modes agreed well with the calibrated values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.