Abstract. Although the knowledge of the gravity of the Earth has improved considerably with CHAMP, GRACE, and GOCE (see appendices for a list of abbreviations) satellite missions, the geophysical community has identified the need for the continued monitoring of the time-variable component with the purpose of estimating the hydrological and glaciological yearly cycles and long-term trends. Currently, the GRACE-FO satellites are the sole dedicated provider of these data, while previously the GRACE mission fulfilled that role for 15 years. There is a data gap spanning from July 2017 to May 2018 between the end of the GRACE mission and start the of GRACE-FO, while the Swarm satellites have collected gravimetric data with their GPS receivers since December 2013. We present high-quality gravity field models (GFMs) from Swarm data that constitute an alternative and independent source of gravimetric data, which could help alleviate the consequences of the 10-month gap between GRACE and GRACE-FO, as well as the short gaps in the existing GRACE and GRACE-FO monthly time series. The geodetic community has realized that the combination of different gravity field solutions is superior to any individual model and set up the Combination Service of Time-variable Gravity Fields (COST-G) under the umbrella of the International Gravity Field Service (IGFS), part of the International Association of Geodesy (IAG). We exploit this fact and deliver the highest-quality monthly GFMs, resulting from the combination of four different gravity field estimation approaches. All solutions are unconstrained and estimated independently from month to month. We tested the added value of including kinematic baselines (KBs) in our estimation of GFMs and conclude that there is no significant improvement. The non-gravitational accelerations measured by the accelerometer on board Swarm C were also included in our processing to determine if this would improve the quality of the GFMs, but we observed that is only the case when the amplitude of the non-gravitational accelerations is higher than during the current quiet period in solar activity. Using GRACE data for comparison, we demonstrate that the geophysical signal in the Swarm GFMs is largely restricted to spherical harmonic degrees below 12. A 750 km smoothing radius is suitable to retrieve the temporal variations in Earth's gravity field over land areas since mid-2015 with roughly 4 cm equivalent water height (EWH) agreement with respect to GRACE. Over ocean areas, we illustrate that a more intense smoothing with 3000 km radius is necessary to resolve large-scale gravity variations, which agree with GRACE roughly at the level of 1 cm EWH, while at these spatial scales the GRACE observes variations with amplitudes between 0.3 and 1 cm EWH. The agreement with GRACE and GRACE-FO over nine selected large basins under analysis is 0.91 cm, 0.76 cm yr−1, and 0.79 in terms of temporal mean, trend, and correlation coefficient, respectively. The Swarm monthly models are distributed on a quarterly basis at ESA's Earth Swarm Data Access (at https://swarm-diss.eo.esa.int/, last access: 5 June 2020, follow Level2longterm and then EGF) and at the International Centre for Global Earth Models (http://icgem.gfz-potsdam.de/series/02_COST-G/Swarm, last access: 5 June 2020), as well as identified with the DOI https://doi.org/10.5880/ICGEM.2019.006 (Encarnacao et al., 2019).
The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced
Abstract. Although the knowledge of the gravity of the Earth has improved considerably with CHAMP, GRACE and GOCE satellite missions, the geophysical community has identified the need for the continued monitoring of the time-variable component with the purpose of estimating the hydrological and glaciological yearly cycles and long-term trends. Currently, the GRACE-FO satellites are the sole dedicated provider of these data, while previously the GRACE mission fulfilled that role for 15 years. There is a data gap spanning from July 2017 to May 2018 between the end of the GRACE mission and start the of GRACE-FO, while the Swarm satellites have collected gravimetric data with their GPS receivers since December 2013. We present high-quality gravity field models from Swarm data that constitute an alternative and independent source of gravimetric data, which could help alleviate the consequences of the 10-month gap between GRACE and GRACE-FO, as well as the short gaps in the existing GRACE and GRACE-FO monthly time series. The geodetic community has realized that the combination of different gravity field solutions is superior to any individual model and set up a Combination Service of Time-variable Gravity Fields (COST-G) under the umbrella of the International Gravity Field Service (IGFS), part of the International Association of Geodesy (IAG). We exploit this fact and deliver to the highest quality monthly-independent gravity field models, resulting from the combination of four different gravity field estimation approaches. All solutions are unconstrained and estimated independently from month to month. We tested the added value of including Kinematic Baselines (KBs) in our estimation of Gravity Field Models (GFMs) and conclude that there is no significant improvement. The non-gravitational accelerations measured by the accelerometer on-board Swarm-C were also included in our processing to determine if this would improve the quality of the GFMs, but observed that is only the case when the amplitude of the non-gravitational accelerations is higher than during the current quiet period in solar activity. Using GRACE data for comparison, we demonstrate that the geophysical signal in the Swarm gravity field models is largely restricted to Spherical Harmonic degrees below 12. A 750 km smoothing radius is suitable to retrieve the temporal variations of Earth’s gravity field over land areas since mid-2015 with roughly 4 cm Equivalent Water Height (EWH) agreement with respect to a GRACE-derived parametric model. Over ocean areas, we illustrate that a more intense smoothing with 3000 km radius is necessary to resolve large scale gravity variations, which agree with the aforementioned parametric model under 2 cm EWH, while at these spatial scales the model represents variations with amplitudes between 2 and 3.5 cm EWH. The agreement with GRACE and GRACE-FO over nine selected large basins under analyses is 1.19 cm, 0.60 cm/year and 0.75 in terms of temporal mean, trend and correlation coefficient, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.