The problem of the refractory nature of gold bearing arsenide ores is described. The basic principle, characteristics and application of pretreatment technique of arsenic-bearing gold ores are presented in this paper. Several different classes of process options for pretreating refractory ores are considered. These options include: roasting oxidation; wet chemical treatment; bacterial peroxidation; and other pretreatments such as: eliminating arsenic in vacuum, volatile smelting, segregation of roasting, electrochemical oxidation. Its development tendency in the future is also looked ahead.KEY WORDS: arsenic-bearing gold ore; pretreatment process; refractory gold ore.
Biological oxidation pretreatment, which can improve the yield of gold, is the main gold extraction technology for disposing refractory gold ore with high arsenic and sulfur. The temperature of the oxidation tank influences the oxidation efficiency between the ore pulp and bacteria, including the yield of gold. Therefore, measurement has consistently been an important subject for researchers. As an effective data processing method, data fusion has been used extensively in many fields of industrial production. However, the interference of equipment or external factors such as the diurnal temperature difference or powerful wind may constantly increase measurement errors and damage certain sensors, which may transmit error data. These problems can be solved by following a pretreatment process. First, we establish a heat transfer mechanism model. Second, we design a small-range sensor network for the pretreatment process and present a layered fusion structure of sharing sensors using a multi-connected fusion structure. Third, we introduce the idea of iterative operation in data processing. In addition, we use prior data for predicting state values twice in order to improve the effectiveness of extended Kalman filtering in one time step. This study also proposes multi-fading factors on the basis of a weighted fading memory index to adjust the prediction error covariance. Finally, the state estimation accuracy of each sensor can be used as a weighting principle for the predictive confidence of each sensor by adding a weighting factor. In this study, the performance of the proposed method is verified by simulation and compared with the traditional single-sensor method. Actual industrial measurement data are processed by the proposed method for the equipment experiment. The performance index of the simulation and the experiment shows that the proposed method has a higher global accuracy than the traditional single-sensor method. Simulation results show that the accuracy of the proposed method has a 55% improvement upon that of the traditional single-sensor method, on average. In the equipment experiment, the accuracy of the industrial measurement improved by 37% when using the proposed method.
The process of extracting gold by biological oxidation involves oxidizing the refractory high-sulfur and high-arsenic ore with the help of bacteria to decompose the wrapping material of gold to extract the gold. Therefore, maximizing the activity of bacteria will directly affect the efficiency of gold extraction, for which it is particularly important to maintain the pulp temperature in the oxidation tank at the optimal bacteria breeding temperature. However, gold mines are generally located in mountainous areas, and the large temperature difference between day and night in winter, coupled with the influence of wind and snow, creates variations in the temperature in the oxidation tank. The traditional temperature measurement method cannot fully reflect the temperature change of the oxidation tank. As a multi-field application method, sensor information fusion can effectively address the problem of pulp temperature measurement. First, we analyzed the heat transfer principle inside the oxidation tank, and designed the cluster hierarchical sensor network according to the spatial position of each oxidation tank and the environmental interference factors. The network structure is divided into three layers; the bottom of the sensor to collect pulp temperature data shows a spiral distribution in the inner wall of the oxidation tank. Each cluster head node sensor is used as an intermediate layer to complete local measurement fusion estimation. Finally, the fusion center is taken as the upper layer to realize the global state fusion estimation. Secondly, in the data processing of the bottom temperature sensor, the traditional unscented Kalman filter (UKF) algorithm is improved and the fading memory matrix is added to improve the identification of nonlinear modeling errors. The sequential observation fusion estimator (SOFE) algorithm is embedded in the measurement update to improve the performance of local measurement fusion. Finally, in the global state fusion estimation, the sequential analysis is combined with the inverse covariance intersection, and the sequential analysis and inverse covariance intersection-global state fusion estimation (SICI-GSFE) algorithm is proposed. Through calculation and simulation, the results show that the external interference can be reduced by combining all the temperature state estimations, and the accuracy of the best global temperature state estimation is improved.
A class of aggregative games with coupled constraints is considered in this paper. The problem of seeking generalized Nash equilibrium (GNE) for the game with double‐integrator multi‐agent systems on weight‐balanced directed graphs is studied. To remove the convergence conditions related to the Laplacian matrix of the communication graph, adaptive parameters are introduced in the designed seeking algorithm. Moreover,an event‐triggered broadcasting scheme is designed to reduce communication loads when agents execute the seeking algorithm. It is shown that the designed algorithm can globally asymptotically converge to the GNE of the game and the proposed event‐triggered scheme is free of the Zeno behavior. A numerical example is illustrated to validate the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.