We present a real-time Truncated Signed Distance Field (TSDF)-based three-dimensional (3D) semantic reconstruction for LiDAR point cloud, which achieves incremental surface reconstruction and highly accurate semantic segmentation. The high-precise 3D semantic reconstruction in real time on LiDAR data is important but challenging. Lighting Detection and Ranging (LiDAR) data with high accuracy is massive for 3D reconstruction. We so propose a line-of-sight algorithm to update implicit surface incrementally. Meanwhile, in order to use more semantic information effectively, an online attention-based spatial and temporal feature fusion method is proposed, which is well integrated into the reconstruction system. We implement parallel computation in the reconstruction and semantic fusion process, which achieves real-time performance. We demonstrate our approach on the CARLA dataset, Apollo dataset, and our dataset. When compared with the state-of-art mapping methods, our method has a great advantage in terms of both quality and speed, which meets the needs of robotic mapping and navigation.
This paper addresses the problem of biometric identification of animals, specifically dogs. We apply advanced machine learning models such as deep neural network on the photographs of pets in order to determine the pet identity. In this paper, we explore the possibility of using different types of "soft" biometrics, such as breed, height, or gender, in fusion with "hard" biometrics such as photographs of the pet's face. We apply the principle of transfer learning on different Convolutional Neural Networks, in order to create a network designed specifically for breed classification. The proposed network is able to achieve an accuracy of 90.80% and 91.29% when differentiating between the two dog breeds, for two different datasets. Without the use of "soft" biometrics, the identification rate of dogs is 78.09% but by using a decision network to incorporate "soft" biometrics, the identification rate can achieve an accuracy of 84.94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.