Three-dimensional (3D) printing technologies are advanced manufacturing technologies based on computer-aided design digital models to create personalized 3D objects automatically. They have been widely used in the industry, design, engineering, and manufacturing fields for nearly 30 years. Three-dimensional printing has many advantages in process engineering, with applications in dentistry ranging from the field of prosthodontics, oral and maxillofacial surgery, and oral implantology to orthodontics, endodontics, and periodontology. This review provides a practical and scientific overview of 3D printing technologies. First, it introduces current 3D printing technologies, including powder bed fusion, photopolymerization molding, and fused deposition modeling. Additionally, it introduces various factors affecting 3D printing metrics, such as mechanical properties and accuracy. The final section presents a summary of the clinical applications of 3D printing in dentistry, including manufacturing working models and main applications in the fields of prosthodontics, oral and maxillofacial surgery, and oral implantology. The 3D printing technologies have the advantages of high material utilization and the ability to manufacture a single complex geometry; nevertheless, they have the disadvantages of high cost and time-consuming postprocessing. The development of new materials and technologies will be the future trend of 3D printing in dentistry, and there is no denying that 3D printing will have a bright future.
Graphene can be used as a drug carrier of doxorubicin (DOX) to reduce the side effects of doxorubicin. However, there is limited research on the surface chemical modifications and biological effects of graphene oxide (GO). Therefore, it is necessary to explore the DOX affinity of different oxygen-containing functional groups in the graphene system. We constructed graphene system models and studied the structure and distribution of epoxy and hydroxyl groups on the carbon surface. Based on molecular dynamics simulations and density functional theory (DFT), we investigated the interaction between DOX and either pristine graphene or GO with different ratios of oxygen-containing groups. The hydroxyl groups exhibited a stronger affinity for DOX than the epoxy groups. Therefore, the DOX loading capacity of graphene systems can be adjusted by increasing the ratio of hydroxyl to epoxy groups on the carbon surface.
Magnesium alloys have great application prospects as ideal bone implant materials. However, their poor corrosion resistance limits their clinical orthopedic application. Surface modification promotes the corrosion resistance of magnesium. Conversion coatings, such as calcium phosphate (Ca-P) coating, microarc oxidation (MAO) treatment, and fluoride (FLU) treatment, have been extensively investigated in in vivo studies. This systematic review and network meta-analysis compared the influence of different conversion coatings on bone repair, material properties, and systemic host response in orthopedic applications. Using the PICOS model, the inclusion criteria for biodegradable magnesium and its alloys were determined for in vivo studies. Four databases were used. The standard and weight mean differences with 95% confidence intervals were used to analyze new bone formation and degradation rate. Network structure and forest plots were created, and ranking probabilities were estimated. The risk of bias and quality of evidence were assessed using SYRCLE, CERQual, and GRADE tools. In the qualitative analysis, 43 studies were selected, and the evaluation of each outcome indicator was not entirely consistent from article to article. In the quantitative analysis, 21 articles were subjected to network meta-analysis, with 16 articles on implant degradation and 8 articles for new bone formation. Additionally, SUCRA indicated that Ca-P coating exhibited the highest corrosion resistance, followed by FLU treatment. MAO demonstrated the best capability for new bone formation, followed by Ca-P coating. Ca-P coating exhibited the highest overall performance. To conclude, coated Mg can promote better new bone formation than bare Mg and has considerable biocompatibility. Ca-P-coated Mg and MAO-coated Mg have the greatest potential to significantly promote corrosion resistance and bone regeneration, respectively. The findings of this study will provide a theoretical basis for the investigation of composite coatings and guidance for the orthopedic application of Mg bone implants.
Tissue adhesive has notable clinical benefits in hernia repair fixation. A novel poloxamine tissue adhesive was previously shown to successfully bond collagen tissue with adequate adhesive strength. In application related to attachment of polypropylene (PP) mesh, the adhesive strength between the mesh and poloxamine hydrogel adhesive is limited by the hydrophobicity of PP monofilaments and lack of covalent bond formation. The purpose of this study was to compare two different surface modifications [bovine serum albumin (BSA) adsorption and poly-glycidyl methacrylate/ human serum albumin (PGMA/HSA) grafting] of PP mesh for improving the adhesive strength between poloxamine hydrogel adhesive and PP mesh. The PGMA/HSA surface modification significantly improved the adhesive strength for meshes attached with poloxamine hydrogel tissue adhesive compared with unmodified meshes and meshes modified by BSA adsorption. An area of 1 cm 2 adhesive provided for a maximum adhesive strength of 65-70 kPa for meshes modified by PGMA/HSA, 4-13 kPa for meshes modified by BSA, and 22-45 kPa for unmodified meshes. Optical microscopy and infrared spectroscopy (FTIR) confirmed the improved adhesive strength was achieved through mechanical interlock of the hydrogel tissue adhesive into the PP mesh pores and chemical bonding of the albumin after successful PGMA/HSA grafting onto the PP monofilaments.How to cite this article: Lu X, Khanna A, Luzinov I, Nagatomi J, Harman M. 2019. Surface modification of polypropylene surgical meshes for improving adhesion with poloxamine hydrogel adhesive. J Biomed Mater Res
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.