Background Aquaporins (AQPs) are integral membrane proteins from a larger family of major intrinsic proteins (MIPs) and function in a huge variety of processes such as water transport, plant growth and stress response. The availability of the whole-genome data of different cotton species allows us to study systematic evolution and function of cotton AQPs on a genome-wide level. Results Here, a total of 53, 58, 113 and 111 AQP genes were identified in G. arboreum , G. raimondii , G. hirsutum and G. barbadense , respectively. A comprehensive analysis of cotton AQPs, involved in exon/intron structure, functional domains, phylogenetic relationships and gene duplications, divided these AQPs into five subfamilies (PIP, NIP, SIP, TIP and XIP). Comparative genome analysis among 30 species from algae to angiosperm as well as common tandem duplication events in 24 well-studied plants further revealed the evolutionary conservation of AQP family in the organism kingdom. Combining transcriptome analysis and Quantitative Real-time PCR (qRT-PCR) verification, most AQPs exhibited tissue-specific expression patterns both in G. raimondii and G. hirsutum . Meanwhile, a bias of time to peak expression of several AQPs was also detected after treating G. davidsonii and G. hirsutum with 200 mM NaCl. It is interesting that both PIP1;4 h/i/j and PIP2;2a/e showed the highly conserved tandem structure, but differentially contributed to tissue development and stress response in different cotton species. Conclusions These results demonstrated that cotton AQPs were structural conservation while experienced the functional differentiation during the process of evolution and domestication. This study will further broaden our insights into the evolution and functional elucidation of AQP gene family in cotton. Electronic supplementary material The online version of this article (10.1186/s12864-019-5928-2) contains supplementary material, which is available to authorized users.
Plant mitogen-activated protein kinase (MAPK) cascades play important roles in development and stress responses. In previous studies, we have systematically investigated the mitogen-activated protein kinase kinase (MKK) and MAPK gene families in cotton. However, the complete interactions between MAPK gene family members in MAPK signaling cascade is poorly characterized. Herein, we investigated the mitogen-activated protein kinase kinase kinase (MAPKKK) family members and identified a total of 89 MAPKKK genes in the Gossypium raimondii genome. We cloned 51 MAPKKKs in G. hirsutum and investigated the interactions between MKK and MAPKKK proteins through yeast-two hybrid assays. A total of 18 interactive protein pairs involved in 14 MAPKKKs and six MKKs were found. Among these, 13 interactive pairs had not been reported previously. Gene expression patterns revealed that 12 MAPKKKs were involved in diverse signaling pathways triggered by hormone treatments or abiotic stresses. By combining the MKK-MAPK and MKK-MAPKKK protein interactions with gene expression patterns, 38 potential MAPK signaling modules involved in the complicated cross-talks were identified, which provide a basis on elucidating biological function of the MAPK cascade in response to hormonal and/or stress responses. The systematic investigation in MAPK signaling cascades will lay a foundation for understanding the functional roles of different MAPK cascades in signal transduction pathways, and for the improvement of various defense responses in cotton.
SUMMARY Global climate changes cause an increase of abiotic and biotic stresses that tremendously threaten the world's crop security. However, studies on broad‐spectrum response pathways involved in biotic and abiotic stresses are relatively rare. Here, by comparing the time‐dependent transcriptional changes and co‐expression analysis of cotton (Gossypium hirsutum) root tissues under abiotic and biotic stress conditions, we discovered the common stress‐responsive genes and stress metabolism pathways under different stresses, which included the circadian rhythm, thiamine and galactose metabolism, carotenoid, phenylpropanoid, flavonoid, and zeatin biosynthesis, and the mitogen‐activated protein kinase signaling pathway. We found that thiamine metabolism was an important intersection between abiotic and biotic stresses; the key thiamine synthesis genes, GhTHIC and GhTHI1, were highly induced at the early stage of stresses. We confirmed that thiamine was crucial and necessary for cotton growth and development, and its deficiency could be recovered by exogenous thiamine supplement. Furthermore, we revealed that exogenous thiamine enhanced stress tolerance in cotton via increasing calcium signal transduction and activating downstream stress‐responsive genes. Overall, our studies demonstrated that thiamine played a crucial role in the tradeoff between plant health and stress resistance. The thiamine deficiency caused by stresses could transiently induce upregulation of thiamine biosynthetic genes in vivo, while it could be totally salvaged by exogenous thiamine application, which could significantly improve cotton broad‐spectrum stress tolerance and enhance plant growth and development.
Low visibility, associated with fog, severely affects land, marine, and air transportation. Visibility is an important indicator to identify different intensities of fog; therefore, improving the ability to forecast visibility in fog is an urgent need for social and economic development. Establishing a proper visibility parameterization scheme is crucial to improving the accuracy of fog forecast operation. Considering various visibility impact factors, including RH, Nd, D, LWC, the parameterization formula of visibility in fog, as well as their performance in meteorology operation, are reviewed. Moreover, the estimated ability of the visibility parameterization formulas combined with the numerical model is briefly described, and their advantages and shortcomings are pointed out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.