The central area is the core region of China’s economic development. Under the current goal of carbon emission reduction, the analysis of the decoupling relationship between economic growth and carbon emissions and the carbon rebound effect will help us to formulate corresponding policies, achieve a carbon peak at an early date, and ensure high-quality economic development. Based on the energy consumption data from 2000 to 2019, the carbon emission of six provinces of the central region was calculated. The Tapio decoupling model was used to learn about the decoupling index. And then, by calculating the contribution rate of technological progress to both economic growth and carbon emission intensity, the carbon saving amount and carbon rebound amount can be calculated, and the rebound effect value of carbon emission is obtained. The results show that the economy in central China presents a trend of growth. In contrast, the carbon emission of each province shows a gradient structure with a large difference, and the economic growth and carbon emission show a weak decoupling in the past five years. We further analyzed the rebound effect of carbon emissions and found that 30% of the years in the central region have a rebound effect with values of more than one. Finally, this study puts forward policy suggestions for the early realization of carbon peaks and high-quality economic development in the central region.
The “14th Five-Year Plan” period is a critical period and a window to obtain emission peak and carbon neutrality in China. The Yellow River Basin, a vital location for population activities and economic growth, is significant to China’s emission peak by 2030. Analyzing carbon emissions patterns and decomposing the influencing factors can provide theoretical support for reducing carbon emissions. Based on the energy consumption data from 2000–2019, the method recommended by Intergovernmental Panel on Climate Change (IPCC) is used to calculate the carbon emissions in the Yellow River Basin. The Logarithmic Mean Divisia Index (LMDI) decomposition method decomposes the influence degree of each influencing factor. The conclusions are as follows: First, The Yellow River Basin has not yet reached the peak of carbon emissions. Regional carbon emissions trends are different. Second, Shandong, Shanxi, Henan and Inner Mongolia consistently ranked in the top four in total carbon emissions, with low carbon emission efficiency. Third, Economic development has the most significant contribution to carbon emissions; other factors have various effects on nine provinces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.