Currently, the concept of Mobile Edge Computing (MEC) has been applied as a solution against the plethora of demands for high-quality computing services. It comprises several essential processes, such as resource allocation, data transmission, and task processing. Furthermore, researchers applied blockchain technology, aiming to enhance the robustness of the MEC system. At present, resource allocation in the MEC system is a very hot field, but there are still some problems in the resource allocation process under the traditional MEC architecture, such as privacy disclosure and so on. Moreover, the resource allocation problem in a blockchain-enabled MEC system will be more complicated, while the mining process may have an impact on resource allocation policy. To address this issue, this paper investigates the resource allocation problem with blockchain-based MEC system architecture. A brand new consensus mechanism: proof of learning (PoL), is applied to the system, which does not waste the computing resources of edge computing servers. Based on this, we modeled the system mathematically, focusing on server processing latency, mining latency, rewards under the new consensus, and total cost. The asynchronous advantage Actor-Critic (A3C) algorithm is used to optimize resource allocation policy. To better capture the long-time trend of the system, the temporal convolutional network (TCN) is implemented to represent the policy function and state-value function in the reinforcement learning model. The results show that the A3C algorithm based on TCN not only converges faster but also is more stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.