Alkali phosphates-modified NaY zeolites were developed as catalysts for efficient conversion of lactic acid to acrylic acid. The catalytic performance was optimized in terms of the type and loading of alkali phosphates, reaction temperature, liquid hourly space velocity, and lactic acid concentration. A high acrylic acid yield of 58.4% was achieved at 340 °C over 14 wt % Na2HPO4/NaY. The physicochemical properties of the catalysts were investigated by various techniques including NH3-TPD, pyridine adsorption-FTIR, Raman, and MAS 31P NMR. Introduction of alkali phosphates to NaY zeolite results in a decline of surface acidity. The results of FTIR, Raman, and MAS 31P NMR investigations on the fresh and used catalysts suggest that sodium phosphate is largely transformed to sodium lactate during the reaction. The phosphates and the in situ generated sodium lactate function as highly active species for the target reaction.
An acrylic acid yield of 74.3% and a formation rate of 12.0 mmol gcat−1 h−1 have been achieved at 340 °C by lactic acid dehydration over Na2HPO4-modified NaY nanocrystallites (NaY-n) due to appropriate surface acidity together with the unique structural features of NaY-n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.