Background In breast cancer (BC), tumor‐associated macrophages (TAMs) are an important component of the tumor microenvironment and are closely related to poor prognosis. A growing number of studies have focused on the role of TAMs in BC progression and therapeutic strategies targeting TAMs. As an emerging treatment, the application of nanosized drug delivery systems (NDDSs) in the treatment of BC by targeting TAMs has attracted much attention. Aims This review is to summarize the characteristics and treatment strategies targeting TAMs in BC and to clarify the applications of NDDSs targeting TAMs in the treatment of BC by targeting TAMs. Materials & Methods The existing results related to characteristics of TAMs in BC, BC treatment strategies by targeting TAMs, and the applications of NDDSs in these strategies are described. Through analyzing these results, the advantages and disadvantages of the treatment strategies using NDDSs are discussed, which could provide advices on designing NDDSs for BC treatment. Results TAMs are one of the most prominent noncancer cell types in BC. TAMs not only promote angiogenesis, tumor growth and metastasis but also lead to therapeutic resistance and immunosuppression. Mainly four strategies have been used to target TAMs for BC therapy, which include depleting macrophages, blocking recruitment, reprogramming to attain an anti‐tumor phenotype, and increasing phagocytosis. Since NDDSs can efficiently deliver drugs to TAMs with low toxicity, they are promising approaches for targeting TAMs in tumor therapy. NDDSs with various structures can deliver immunotherapeutic agents and nucleic acid therapeutics to TAMs. In addition, NDDSs can realize combination therapies. Discussion TAMs play a critical role in the progression of BC. An increasing number of strategies have been proposed to regulate TAMs. Compared with free drugs, NDDSs targeting TAMs improve drug concentration, reduce toxicity and realize combination therapies. However, in order to achieve better therapeutic efficacy, there are still some disadvantages that need to be considered in the design of NDDSs. Conclusion TAMs play an important role in the progression of BC, and targeting TAMs is a promising strategy for BC therapy. In particular, NDDSs targeting TAMs have unique advantages and are potential treatments for BC.
Background Uveal melanoma (UM) is adults’ most common primary intraocular malignant tumor, prone to metastasis and high mortality. Eyeball enucleation commonly used in the clinic will lead to permanent blindness and mental disorders. Thus, new methods are urgently needed to diagnose and treat UM early to preserve patients’ vision. Methods and results Herein, multifunctional nanoparticles (NPs) were synthesized by loading chlorin e6 (Ce6) in poly-lactic-co-glycolic acid (PLGA) NPs and wrapping FeIII-tannic acid (FeIII-TA) on the outside (FeIII-TA/PLGA/Ce6, designated as FTCPNPs). Then, the synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) antitumor effects of FTCPNPs excited by near-infrared (NIR) laser were evaluated. Moreover, we verified the mechanism of synergistic PTT/PDT leading to mitochondrial dysfunction and inducing tumor cell apoptosis. Additionally, FTCPNPs can be used as excellent magnetic resonance (MR)/photoacoustic (PA) imaging contrast agents, enabling imaging-guided cancer treatment. Finally, The NPs have good biological safety. Conclusion This noninvasive NIR light-triggered cooperative phototherapy can easily penetrate eye tissue and overcome the disadvantage of limited penetration of phototherapy. Therefore, cooperative phototherapy is expected to be used in fundus tumors. This treatment model is applied to UM for the first time, providing a promising strategy and new idea for integrating the diagnosis and treatment of UM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.