An on-chip microreactor was proposed toward the acceleration of protein digestion through the construction of a nanozeolite-assembled network. The nanozeolite microstructure was assembled using a layer-by-layer technique based on poly(diallyldimethylammonium chloride) and zeolite nanocrystals. The adsorption of trypsin in the nanozeolite network was theoretically studied based on the Langmuir adsorption isotherm model. It was found that the controlled trypsin-containing nanozeolite networks assembled within a microchannel could act as a stationary phase with a large surface-to-volume ratio for the highly efficient proteolysis of both proteins at low levels and with complex extracts. The maximum proteolytic rate of the adsorbed trypsin was measured to be 350 mM min-1 microg-1, much faster than that in solution. Moreover, due the large surface-to-volume ratio and biocompatible microenvironment provided by the nanozeolite-assembled films as well as the microfluidic confinement effect, the low-level proteins down to 16 fmol per analysis were confidently identified using the as-prepared microreactor within a very short residence time coupled to matrix-assisted laser desorption-time-of-flight mass spectrometry. The on-chip approach was further demonstrated in the identification of the complex extracts from mouse macrophages integrated with two-dimensional liquid chromatography-electrospray ionization-tandem mass spectrometry. This microchip reactor is promising for the development of a facile means for protein identification.
The combination of photodynamic therapy and chemotherapy is a promising strategy to overcome growing problems in contemporary medicine, such as low therapeutic efficacy and drug resistance. Four zinc(II) phthalocyanine-coumarin conjugates were synthesized and characterized. In these complexes, zinc(II) phthalocyanine was used as the photosensitizing unit, and a coumarin derivative was selected as the cytostatic moiety; the two components were linked via a tri(ethylene glycol) chain. These conjugates exhibit high photocytotoxicity against HepG2 human hepatocarcinoma cells, with low IC50 values in the range of 0.014-0.044 μM. The high photodynamic activities of these conjugates are in accordance with their low aggregation tendency and high cellular uptake. One of these conjugates exhibits high photocytotoxicity and significantly higher chemocytotoxicity. The results clearly show that the two antitumor components in these conjugates work in a cooperative fashion. As shown by confocal microscopy, the conjugates can localize in the mitochondria and lysosomes, and one of the conjugates can also localize in the cell nuclei.
Controlled hierarchical self-assembly of synthetic molecules into chiral nanoarchitectures to mimic those biological chiral structures is of great importance. Here, a low-molecular-weight organogelator containing a benzimidazole moiety conjugated with an amphiphilic l-glutamic amide has been designed and its self-assembly into various hierarchical chiral nanostructures is investigated. Upon gel formation in organic solvents, 1D chiral nanostructure such as nanofiber and nanotube are obtained depending on the solvents. In the presence of transition and rare earth metal ions, hierarchical chiral nanostructures are formed. Specifically, the addition of TbCl3 , EuCl3 , and AgNO3 leads to nanofiber structures, while the addition of Cu(NO3 )2 , Tb(NO3 )3 , or Eu(NO3 )3 provides the microflower structures and microtubular flower structures, respectively. While Eu(III) and Tb(III)-containing microtubular flowers keep the chirality, the Cu(II)-coordinated microflowers lose chirality. More interestingly, the nanofibers formed by the gelator coordinated with Eu(III) or Tb(III) ions show not only the supramolecular chirality but also the circularly polarized luminescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.