Phenothiazines derivatives are versatile compounds that are used in many fields, depending on the type and position of the substitution on the parent molecule. The photochemical, photophysical and electrochemical properties of several phenothiazine derivatives have been previously reported in detail. However, no reports have been presented for 2-aminophenothiazine (APH), a candidate that provides for the further chemical modification and the introduction of specific substituents. In this work, the photophysical and electrochemical properties of APH were measured in acetonitrile. The APH ground state absorption and fluorescence spectrum (φf < 0.01) are similar to the corresponding that of PH parent molecule. A mono exponential decay fluorescence lifetime of 0.65 ns was determined for APH in acetonitrile. Characterization of the 355 nm nanosecond laser flash photolysis transient species reveals the presence of the triplet-triplet transient intermediate with a high intersystem crossing quantum yield (φT = 0.72 ± 0.07), indicating that the APH main excited state deactivation channel is intersystem crossing. The oxidation potential of APH is lower than phenothiazine parent molecule ((0.38 V vs 0.69 V vs Ag/AgCl(sat)). Altogether, these results show that APH has photochemical and photophysical properties similar to the phenothiazine parent molecule, but with the possibility of providing an amino functionality at 2-position for further chemical modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.