The innate immune response to viruses is initiated when specialized cellular sensors recognize viral danger signals. Here we show that truncated forms of viral genomes that accumulate in infected cells potently trigger the sustained activation of the transcription factors IRF3 and NF-κB and the production type I IFNs through a mechanism independent of IFN signaling. We demonstrate that these defective viral genomes (DVGs) are generated naturally during respiratory infections in vivo even in mice lacking the type I IFN receptor, and their appearance coincides with the production of cytokines during infections with Sendai virus (SeV) or influenza virus. Remarkably, the hallmark antiviral cytokine IFNβ is only expressed in lung epithelial cells containing DVGs, while cells within the lung that contain standard viral genomes alone do not express this cytokine. Together, our data indicate that DVGs generated during viral replication are a primary source of danger signals for the initiation of the host immune response to infection.
Defective viral genomes (DVGs) are generated during virus replication. DVGs bearing complementary ends are strong inducers of dendritic cell (DC) maturation and of the expression of antiviral and pro-inflammatory cytokines by triggering signaling of the RIG-I family of intracellular pattern recognition receptors. Our data show that DCs stimulated with virus containing DVGs have an enhanced ability to activate human T cells and can induce adaptive immunity in mice. In addition, we describe the generation of a short Sendai virus (SeV)-derived DVG RNA (DVG-324) that maintains strong immunostimulatory activity in vitro and in vivo. DVG-324 induced high levels of IFN-β expression when transfected into cells and triggered fast expression of pro-inflammatory cytokines and mobilization of dendritic cells when injected into the footpad of mice. Importantly, DVG-324 enhanced the production of antibodies to a prototypic vaccine after a single intramuscular immunization in mice. Notably, the proinflammatory cytokine profile induced by DVG-324 was different from that induced by poly I:C, the only viral RNA analogue currently used as an immunostimulant in vivo, suggesting a distinct mechanism of action. SeV-derived oligonucleotides represent novel alternatives to be harnessed as potent adjuvants for vaccination.
Stimulation of the antiviral response depends on the sensing of viral pathogen-associated molecular patterns (PAMPs) by specialized cellular proteins. During infection with RNA viruses, 5′-di- or -triphosphates accompanying specific single or double-stranded RNA motifs trigger signaling of intracellular RIG-I-like receptors (RLRs) and initiate the antiviral response. Although these molecular signatures are present during the replication of many viruses, it is unknown whether they are sufficient for strong activation of RLRs during infection. Immunostimulatory defective viral genomes (iDVGs) from Sendai virus (SeV) are among the most potent natural viral triggers of antiviral immunity. Here we describe an RNA motif (DVG70-114) that is essential for the potent immunostimulatory activity of 5′-triphosphate-containing SeV iDVGs. DVG70-114 enhances viral sensing by the host cell independently of the long stretches of complementary RNA flanking the iDVGs, and it retains its stimulatory potential when transferred to otherwise inert viral RNA. In vitro analysis showed that DVG70-114 augments the binding of RIG-I to viral RNA and promotes enhanced RIG-I polymerization, thereby facilitating the onset of the antiviral response. Together, our results define a new natural viral PAMP enhancer motif that promotes viral recognition by RLRs and confers potent immunostimulatory activity to viral RNA.
Defective viral genomes (DVGs) generated during Sendai virus infection are the primary triggers of the host antiviral response. DVGs induce the expression type-I interferons (IFN) and other cytokines upon binding through the intracellular viral sensors RIG-I and MDA5. The molecular mechanism behind the superior immunostimulatory activity of DVGs is unknown. To identify RNA motifs that provide potent immunostimulatory activity to DVGs, we generated a series of deletion mutants of a prototype DVG derived from Sendai virus. In vitro transcribed RNA from these mutants were tested for their ability to induce type I IFNs upon transfection. In silico single strand RNA modeling of the mutants folding identified an AU-enriched stem loop domain formed by nucleotides 70-114 of the DVG that is essential for type I IFN induction. Consistent with this prediction, we demonstrate that mutants lacking this region lose their stimulatory activity, while mutants that kept intact this region preserved it Thus, a minimal RNA motif at the 5’ but not the 3’ complimentary sequence is critical for maximal DVG activity and oligonucleotides including such region may represent novel alternatives to be harnessed as potent adjuvants for vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.